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Introduc'tion

Most computer-controlled synthesizers have inter-
faces that are defined in terms of discrete real-time
"events" {e.g., commands sent from the computer
to the synthesizer). In designing a programming sys-
tem for such an environment, some likely goals are:

Allow a program to interact with a human per-
former (via input devices, such as keyboards,
attached to the computer) and to respond
quickly to these interactions.

Support "on-line" algorithmic music generation,
that is, allow the computer to act as a com-
poser/ accompanist, or improviser, rather than
simply as a sequencer or message forwarder.

Provide accurately timed event performance, for
precise rhythmic control.

Support concurrent (multiprocess) programming.
Concurrency is essential for many musical ap-
plications; for example, multiple concunent
note-playing processes are useful for polyphony.

This paper explores the interdependencies among
these goals and proposes mechanisms by which the
goals can be simultaneously met. These mecha-
nisms ere event bu't''t'ering, which reduces or elimi-
nates event timing errors, and deadline scheduling,
which is an appropriate way to schedule event-
generating processes.

Access to these low-level mechanisms can be as
procedure or function calls from a language such as
C or Lisp. Hence the mechanisms can be provided
without writing or even necessarily modifying a
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compiler. An initial implementation using Forth
has been completed and achieves the goals listed
above.

Timing Accuracy of Event Performance

Terminology

An event, as the term is used in this paper, is the
execution of an event performance routine that
performs an output action. An example is a syn-
thesizer "key-down" event, which might involve
writing a few bytes out on a bus or MIDI channel.

An event routine can take parameters; for ex-
ample, the key-down routine might need pitch,
waveform, and envelope information. The routines
are assumed to use negligible central processor unit
{CPU} time; in practice, this means that their CPU
time per cail should be less than the required tem-
poral resolution. However, the computation of an
event {the algorithmic selection of the performance
routine and its parameters) may take significant
CPU time. The distinction between event computa-
tion andeyent performance should be kept in mind.

Problems with Simple Scheduling Approaches

Conventional operating systems do not provide a
service for accurately timed event performance but
may supply a timed "sleep" service. A simple ap-
proach to event generation would have a process
perform each event immediately after it rs com-
puted, then sleep for the duration of the event. Were
processing infinitely fast this approach would be
correct. As it is, each event is delayed by the time
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required for its computation. These delays are cu-
mulative and become noticeable when there are
groups of simultaneous or nearly simultaneous
events, each of which takes signifrcant CPU time to
compute.

Intervention scheduling (Abbott I 984) and Moxie
(Collinge 19801 starts each event computation at irs
scheduled performance time. This approach reduces
error accumulation but doesn't address the problem
of simultaneous events.

Event Buffering

Event buffering is a method that decouples com-
putation from performance. Events are computed
slightly ahead of their performance, and event de-
scriptors (records containing the address of an event
performance routine together with whatever param-
eters it requires) are stored in an event buffer while
they await performance. A clock interrupt routine
performs the events buffered at their scheduled
times {see Fig. 1).

Event buffering can reduce or eliminate timrng
inaccuracy. As an example, suppose a composition
program uses 0.2 CPU sec to compute each note
and that most notes are I sec apart/ but occasion-
ally there is a burst of l0 notes only 0.1 sec apart. If
the CPU can buffer 2 sec of notes, it is able to keep
ahead of schedule, allowing accurately timed eveni
performance.

For accurately timed on-line performance to be
possible, the average CPU time used to compure
each event must be less than the average delay be-
tween events. Conversely, event buffering is of little
value unless the CPU time used in computrng events
is nonnegligible compared to the desired timine
accuracy.

An Event Buffer Abstraction

To clearly separate event buffering from process
scheduling, we describe the event buffer as a module
that is accessed by only a single process. Logical
time is the {real) time at which the event currently
being computed is scheduled to be performed. Be-
cause of event buffering, logical time is usually
ahead of real time (see Fig. 2).

The event buffer module provides two services:

TIME_ADVANCE(dt)

advances the logical time by dt, and

SCHEDULE_EVENT{procedure_address,
parameters)

schedules an event for performance at the current
logical time.

The model provided by these two services re-
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quires that events be computed in the order of their
performance. An extension that tempers this re-
quirement is described in the section "Future
Actions."

Processes and Deadline Scheduling

In this section we discuss the idea oI process sched-
u/ing and describe a particular policy called dead-
line scheduling that is appropriate for scheduling
event-generating processes.

Terminology

A process is the abstraction of a processor execut-
ing a single instruction stream. Multiple concur-
rent (simultaneously executing) processes can be
simulated on a single processor by occasionally
switching between processes {e.g., Andrews and
Schneider 19831. Each such context sr,retch saves
the machine state of the exiting process in memory
and loads the machine state of the new process.
The area in memory where the state of a process is
stored is called its context block.

The question of when to do a context switch and
what process to switch to must be decided by a

scheduling policy in the underlying system. A pol-
icy in which processes are switched only at known
points in their execution/ such as during system
calls, is called nonpreemptive. Nonpreemptive
scheduling policies have the advantages that ( I ) con-
text switching is fast because little state informa-
tion need be saved, and {2} access to shared data
structures is simpler because a critical section
mechanism is not needed. Nonpreemption was a

goal in designing the scheduling mechanisms drs-
cussed here.

Event-generating versus General Processes

It is useful to distinguish two classes of processes:
event-generating processes, which generate timed
output events, and general processes, which have
tasks such as monitoring input devices. They can

50

Fig. 3. Proccer .t lr, , 
jt.'1"'

mechanisnts.

{Round-robin
scheduling)

Event-generating
processes

------+!!nlD

(Deadline schedulingl

explicitly interact; for example, a general process
can create an event-Senerating process. However,
the two classes are scheduled by different {but inter-
acting) policies. Event-generating processes are
scheduled by a mechanism called deadline schedul-
ing, to be described later.

General processes do not generate events and so

are not scheduled by the deadline mechanism. In
our implementation, general processes are arranged
in a circular queue and are scheduled in a round-
robin, nonpreemptive fashion. Three services are

available to general processes:

pause() does a context switch to the next process
in the queue

sleep{} removes the calling process from the queue
wakeup{P) restores a sleeping process to the queue

A general process can be interrupt-driven lit sleeps
until an interrupt from an input device wakes rt up)
or polling (it runs an infinite loop in which each
iteration checks for input, then calls pause).

The connection between deadline and round-
robin scheduling (or whatever mechanism is used
for general processes) is a deadline process, a gen-
eral process that manages deadline scheduling. This
relationship is depicted in Fig. 3.

Deadline Scheduling

At any point, each event-generating process is posi-
tioned at a particular logical time. A process can ad-
vance in time by calling

time_advance{dt}

and rt can schedule an event for its current logical
time by calling
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sch edule_ event {procedure_ address, parameters 
}

Jhege are generalizations of, and are deffned using,
the lower-level services TIME ADVANCE and
SCIIEDULE_ EVENT menrion;d previ ously.

Civen a set of event-generating processes, the
soonest process is that whose logical time is earli-
est. Deadline scheduling is the nonpreemptive pol_
icy in which the executing 

"u.nt-g.nerating 
pro..r,

is always the soonest process (i.e.,1he process with
the earliest deadlinel.

Deadline scheduling has previously been used for
discrete simulation languages, such as Simula, that
use the model of concurrent event-generating pro_
ce ss€S; see (Leeming lggl J for a survey. It is studied
analytically in (Liu and Layland 1973i. Several com_
puter music language systems have also apparently
used some form of deadline scheduling {Loy lggl;
Schottstaedt 1983). The same idea has-been used for
scheduling interrupt handlers with fixed maxrmum
latencies (Clark 1985J.

An executing event-generating process eventualiy
calls time_advance, say with 

"rgt.r.rr"rrt 
dr. Three

steps are then performed:

l. Its logical time is advanced by dt unrts.
There is now a new soonest process. Let x
be the difference berween the old losical
time and the logical time of the nern,-soonest
process.

2. TIME_ADVANCE is called with argument
x, since this is net advance in logical
ttme on switching from the old to the new

they occur in real time. This provides an lm-
plicit synchronization that simplifies the pro_
gramming of interacting processes.

soonest process.
3. Control is transferred to the new soonest

process.

This algorithm is specified in more detail later.
Deadline scheduling is the natural choice for

scheduling event-generating processes for the fol_
lowing reasons;

Timing errors due to missed deadlines (i.e., an
event not computed at its scheduled perfor_
mance time) are avoided if possible, since the
process with the earliest deadline is always
given highest priority.

Events in different processes are computed in a
deterministic order, namely the order in which

Event Buffering Revisited

We now consider event buffering in more detail.

Buffer Delay and Response Latency

The bu.ffer delay at any point is the difference be_
twe-en logical and real time. When , ,.rr", lnteractswith an existing process the audible etrect of tfrisrnteraction is delayed by the buffer delay. This is aninevitable side-effect of event buffering;'for inrer_
action with a process to have an immeijiate effect
on the stream of event performances, it would be
necessary to ,,back up,, the computation to the

:^1L"11:pornr 
in real time, which is not generally

reasl ble.
An upper bound onJesponse latency can be pro-

vided by limiting the bufier delay, i.e., by tmporirrg
a limit on.the remporal (not the pnvri."it size oftne event buffer. A bound of a fraction of a secondtypically provides adequate responsiveness togetherwithenough buffering for the CpU to stav ahead ofschedule. This bound can be .r,for""J Uf i,ru,r,g
TIME_ADVANCE block (put its caller io sle.pirrr_til the buffer delay falls below tfr. fi-it.-

Fairness to General processes

If the scheduling of general processes is nonnre_
emptive, it is possible for event_g".r.r"ti.,g p'ro-
cesses to monopolize the CpU. This occuis if theydon't compure fasr enough to fill the;;;;, buffer toits limit, in which 

"rr" 
iIME_ADVeNiE never

SICCDS.

A reasonable solution to this problem is to forceTIME_ADVANCE to call pause {thereby givtng allgeneral processes a chance to execute) *hana.ra, ,,
has advanced more than some fixed amount of logi_cal time without sleeping.
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Implementation of Event Buffering

Conceptually, the event buffer can be viewed as a
queue of event descriptors and delay records. It
could be implemented as such. In practice, it has
been advantageous to implement it as an array in
which each entry corresponds to a clock tick, and
points to a list of event descriptors to be performed
at that tick.

Only the ticks within the current event buffer
(i.e., between real time and logical time) are rele-
vant, and a bound can be placed on this interval.
Therefore the event buffer afiey can be a fixed-size
circular buffer, together with two points that indi-
cate the cunent real and logical times.

The following variables are involved in the event
buffer implementation:

i f delay_since_pause > nice_time
pause ( )

delay_since_pause=0
end if

end if
end

Note: The use of t= and -: operators derives from
the C programming language. In C, if el and e2 are
two expressions, then eL op: e2 is equivalent to
e1:e1 op e2.

If an interrupt routine wakes up a general process
and wants to ensure that it runs soon/ it can set
delay_since_pause to nice_time + I. The general
processes will run as soon as TIME ADVANCE is
called. A preemptive scheme couid be developed to
make response to interupts quicker; however, this
would eliminate the advantages of nonpreemption
mentioned earlier. In our experience the benefits of
preemption are not \4'orth the added trouble.

Late Events

If the CPU cannot generate events fast enough to
keep the buffer nonempty/ events are of necessity
performed late. Initial lateness can be avoided by
giving the CPU a "head st&rt"; that is, allor,r'ing the
event buffer to become partially or completely full
before enabling the clock interrupt.

There are several choices in dealing with lateness.
In some applications it might be best to always per-
form events as close to the original schedule as
possible. However, this approach can change the
temporal relationships of events in musically un-
desirable ways, such as by breaking up chords. Mu-
sical requirements suggest the following design
decisions:

Events scheduled to occur simultaneously are al-
ways performed on the same clock interrupt.
This is realized by having the clock interrupt
routine return without performing any events
il buffer_delay = g.

The interval between two event performances is
never aliowed to be less than the scheduled in-
terval. When an event is performed late, the en-
tire remaining schedule is postponed.
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event_buffer:

buf'f er _size:
logical_index:

real_index:

buf f er _delay:

max_delay:
delay _since _pause:

nice tLme:

en array of pointers to lists
of event descriptors.
the size of event_buf't'er
index into event _buf t'et for
logical time
index into event _buf t'er for
real time
logical time minus real
time
response latency bound
time advance since TIME
_ADVANCE Iast called
pause or sleep
Iimit on delal'_since
pause

An algorithm for TIME ADVANCEincorporating
the latency-limiting and farrness mechanrsms can
now be given:

procedure TIME_ADVANCE( dt )

1 o gi cal_index= ( I oglcal_index+dt )

rnod buffer_size
bu f fer_de1ay+ =61
i f buf fer_delay>max_deLay+l

sleep( )

delay_since_pause=0
else

del ay_since_pause + =dt
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Given these decisions, the algorithm for the clock
interrupt routine is as follows:

procedure clock_interrupt ( )

if buffer_delay=-Q return
perforn the event llst in

event_buffer I real_index ]
real_index= ( real_index+l )

mod buffer_size
buffer delaw-=L
i f buf fer_deJ.ay==max_de1ay

wakeup ( deadl ine process )

end if
end

Deadline Scheduling Reyisited

In this section we describe one way of implement-
ing deadline scheduling, and discuss the issues that
arise in the creation and termination of event-
generatrng processes.

Delay Queues

Deadline scheduling can be rmplemented by
organizing the context blocks of event-generating
processes as a delay queue. The soonest process is
always at the head of the queue. Each context block
has a delay fieLd givingits delay beyond the previ-
ous process in the queue (i.e., the difference be-
tween the logical times of the two processes).

_ As an example, suppose the queue is initially as
follows:

Note that the delay field of B now contains its de-
lay beyond the original logical time of A.

The Deadline Process

Recall that the deadline process is a general process
that manages deadline scheduling. If the delay
queue structure is used, the algorithm executed by
the deadline process is as follows (peH stands for
process queue head, i.e., the soonest process, and
PQH.delay rs its delay field):

procedure deadline_process ( )
1o op

1f the deadline process queue
rs non-empty

swrtch to pQH

TIME_ADVANCE ( pQH . detay )
^1^^gr Dg

n2rrqo

end if
end loop

end

and the algorithm for time_advance is:

procedure time_advance ( dt )

1f dt*O
advance thi-s process by dt rn

delay queue
switch to deadline process

ond if

end

The deadline process provides a logical separation
between deadline scheduling and the other system
components (the event buffer and general process
scheduling). There are alternative designs ihat don,t
use a separate deadiine process. These may be
slightly more efficient because they use fewer
context switches, but conceptual simplicity is
sacrificed.

Creation of Event-generating processes

The semantics of creating an event-generating pro-
cess include initializing its logical time. The choice

process;
delay:

If process A calls
gument of 16, the

process:
delav:

time_advance with a

result is:

tail
D
10

duration ar-

tail
D
7

head
ABC
+b5

head
BCA
853
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of "starting time" can depend how the process is
created. If an event-generating process P creates a
process Q, then Q starts at P's logical time. In
other words, Q is placed in the process queue at
zero delay after P. This satisffes the obvious musl-
cal requirement that child processes should be ini-
tially synchronized with their parent.

If an event-generating process is created by a gen-
eral process (..g., by a user-level command inter-
preter), there are potentially two choices for its
initial logical time:

The new process starts at the logical time
of the soonest process, that is, it is inserted
with zero delay after the process queue
head.
The new process starts with its logical time
equal to the current real time. This is done
by storing buft'er_delay in the delay field of
the process queue head, placing the ne$'
context block with zero delay at the head
of the queue, and setting logical_indcr =
real_index and buffer_delay : g.

The latter alternative is referred to as /ast-st artlng
the process. It has the property that if the process
schedules an event before it calls time advance,
that event is heard as soon as possible after the pro-
cess is created. The event is delayed only by its
computation time, rather than by the buffer delay.
Clearly this is musically useful, for it means that
processes created by input gestures can be heard al-
most instantaneously and are rhythmically syn-
chronized with existin&processes.

Structuring the event buffer as an array instead o{
a linked list simplifies the implementation of fast-
starting. This was the main reason for that choice.

Fast-starting violates the principle that events are
computed in order of their occurrence. This can
create anomalies while a new process is "catching
up" to the existing processes. For example, if the
new process reads a frequently modified shared
variable, its view of the value is inconsistent with
that of existing processes during this period. In
practice, this has not been a problem.

Process Termination

A problem arises when the exiting process is the
only process in the queue, and it exits after sched-
uling its final event. The clock interrupt routine
will not perform this event until it is assured that
there are no more events simultaneous with it. i.e..
until another TIME_ADVANCE is done. This is
fixed by calling time_advance(l ) in the process exit
routlne.

Future Actions

The event generation model supplied by sched-
ule_event and time_advance requires that pro-
cesses compute events in their temporal order. At
another extreme is a model in which events can be
computed in any order; that is, schedule_event
takes an absolute event time as an addrtional pa-
rameter. This "random-access" model is convenient
for certain musical applications, such as drstribut-
ing events randomly over an interval. However, it
renders on-line event performance impossible; there
is no alternative but to store all events and perform
them after the entire computation is finrshed.

An intermediate model of event generation, based
on future actions, has the advantages of both the
sequential and random-access models. As before, a
process has a logical time that it can {and, periodi-
cally, must) advance. However, instead of restricting
a process to scheduling events only at its current
logical time, we allow it to schedule actions at non-
negative delays from this time. An action is a call to
an arbitrary parameterized procedure that is sration-
ary in time, i.e., does not call time advance. This
procedure may, for example, be schldule_event.

When a process advances, actions scheduled in
the time interval between its old and new logical
times can safely be performed, since no more ac-
tions can be scheduled for that interval.

For musical purposes, this model provides signifi-
cant advantages over the sequential model. A pro-
cess might position itself at successive measure
boundaries and generate the events within each
measure randomly. The model also provides a

l.

2.
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framework for legato, where key releases are ex-
pressed as future actions.

Scheduling a future action is similar to the idea
in Moxie (Collinge 1980) of causing a procedure
call. The difference is that here it is used as an ad-
iunct to a process mechanism, whereas Moxie uses
itto provide a processlike facility li.e., a procedure
can do some work, then recursively cause itself to
be called at a future time).

This distinction is worth elaborating. Processes
and self-causing procedures can both express musl-
cal activities in time. With processes, information
such as program counter, loop indices, etc., is part
of the process state and is implicitly propagated
over time advances. With self-causing procedures,
the activity must start executing at the beginning
of a procedure whenever it advances in time, and
state information must be explicitly propagated by
the programmer.

Implementation oI Future Actions

Future actions can be implemented as an extension
of the sequential model by associating with each
process a future action queue (FAQ), a delay queue
of action descriptors. An action's total delay in the
FAQ is the interval between the process's logical
time and the time the action is to be per{ormed.

schedule_future_action (procedure_address,
parameters, delay)

inserts an action descriptor with the given delay in
the FAQ of the calling process. time_advance must
be redefined to take the FAQ into account. The al-
gorithm for the new version of time advance is as
follo'*'s {it is defined in terms of the old version,
referred to below as old_time_advance).

procedure time advance ( dt )

time_]eft=dt
I oop

i.f FAQ is empty
old_time_advance ( time 1e ft )

re tu rn

end if
if time_Ieft< (FAQ head) .deIay

(FAQ head) . delay-=time_left
o1d_time_advance (ti-me_Ief t )

re tu rn
end if
old_time_advance( (FAQ head) . delay)
time_Ieft-= ( FAQ head ) . delay
remove FAQ head and perform its
AU L I UII

end loop
end

When a process exits, its FAQ can be nonempty.
To ensure that these actions get performed, the pro-
cess exit routine computes x : the total delay in
the FAQ, and calls time advance(x).

Gonclusion

We have proposed models for output events (param-
eterized performance routines) and for event gen-
eration by processes (sequential, and with future
actionsl. We have posed the problems of process
scheduling and accurately timed on-line event per-
formance for these models, and have given efficient
and easily implemented solutions.

The mechanisms have been implemented on sev-
eral microprocessor configurations. These include a

single-processor system and dual-processor systems,
both with and without shared memort in which
one processor buffers and performs events while
the other executes the event generating processes.
These implementations are in Forth, and are the
basis for a computer music language called FOR-
MULA (Anderson 1984).

This work addresses issues in the design and im-
plementation of a high-level control language for
musical areas such as real-time algorithmic com-
position and programmable interactive perfor-
mance. The proposed mechanisms can be added to
an existing procedural language. The capabilities
provided by these mechanisms are relevant mainly
at the level of controlling note initiations. At lower
levels such as envelope generation, computational
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models such as those of FORMES (Rodet and Co-

inte 1984) and Arctic {Dannenberg 1985) are more

applicable.
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