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 Roger B. Dannenberg
 School of Computer Science
 Carnegie Mellon University
 Pittsburgh, Pennsylvania 15213, USA
 dannenberg@cs.cmu.edu

 Abstract Time Warping
 of Compound Events
 and Signals

 Functions of time are often used to represent con-
 tinuous parameters and the passage of musical
 time or tempo. The work described in this article
 generalizes previous work in three ways. First, com-
 mon temporal operations of stretching and shifting
 are shown to be special cases of a new general
 time-warping operation. Second, we show a lan-
 guage in which these operations are "abstract." In-
 stead of operating directly on signals or events,
 time warps operate on abstract behaviors that inter-
 pret warping at an appropriate structural level.
 Third, we show how time warping can be applied
 to both discrete events and continuous signals.
 These new generalizations are implemented in Ny-
 quist, and we describe the implementation.

 This is the second article of four (starting with
 Dannenberg 1997) on Nyquist, a high-level lan-
 guage for sound synthesis and composition. Ny-
 quist is used as a basis for discussion, both to
 ground this work in a concrete realization and to
 further describe the features of Nyquist. However,
 the general principles presented here should apply
 to many composition, control, and synthesis
 systems.

 Background

 Expressive control is a central problem in the field
 of computer music. The idea of using functions of
 time for control is an old one; for example, com-
 puter music systems often describe sounds in
 terms of pitch contours, amplitude envelopes, and
 other controls, all of which are functions of time. It
 is not surprising that functions have also been pro-
 posed as a mapping/warping from beats ("score
 time") to real time. This mapping can be used to
 specify continuous tempo change, rhythmic time

 alterations such as "swing," and phrasing tech-
 niques such as rubato. Formally, the mapping from
 beats to time is the integral of 1/tempo as a func-
 tion of beat position (Rogers, Rockstroh, and Bat-
 stone 1980).

 Timing manipulations have also been expressed
 in notations intended for discrete event data, such
 as notes. Researchers pursuing discrete structural
 representations for music invented "shift" and
 "stretch" operations that can be neatly composed
 (Spiegel 1981; Buxton et al. 1985; Orlarey 1986).
 These operations are also a natural way to manipu-
 late continuous time functions such as amplitude
 or pitch envelopes, and in fact these manipulations
 are implicit (though not composable) in Music N
 languages (Mathews 1969). Every Music N "note"
 statement specifies a starting time and a duration.
 These effectively shift and stretch the envelopes
 and control signals that pertain to the note.

 Still more recently, abstraction has entered the
 picture, and researchers are concerned with the de-
 tails of, for example, whether a "stretched" vibrato
 slows down or not (Cointe and Rodet 1984; Dan-
 nenberg, McAvinney, and Rubine 1986; Desain and
 Honing 1992, 1993). In languages such as Nyquist,
 where signals are generated, this issue is especially
 important. Without abstraction, a tempo change
 would affect the rate of audio oscillators and cause

 a pitch change! How can we avoid stretched at-
 tacks, unsteady vibrato, and erratic drum rolls un-
 der the influence of time warps?

 Early work (such as Jaffe 1985) offers a clear
 model for computing, combining, and applying
 time-warp functions to musical data. However,
 work previous to Nyquist does not address abstrac-
 tion issues that arise with time warping. On the
 other hand, previous work that does address ab-
 straction issues (Dannenberg, McAvinney, and
 Rubine 1986; Dannenberg 1989; Desain and Hon-
 ing 1992) does not support continuous time warp-
 ing of continuous signals. This new work provides
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 a more general solution in which time warping and
 other time functions can be applied to abstract be-
 haviors that operate all the way down to the signal
 level.

 In the following sections, we will first describe
 time warping as a generalization of shift and
 stretch operations. Next, warping is extended from
 discrete event timing to continuous functions. This
 raises abstraction issues that are addressed in the

 following section. Next, the application of warping
 to continuous transformations is discussed. An im-

 plementation in Nyquist is described, and finally,
 this work is compared to Generalized Time Func-
 tions, or GTF (Desain and Honing 1993).

 Shift, Stretch, and Warp

 Let us begin by developing a formal model of the
 seemingly fundamental operations for "shifting"
 and "stretching." We define two operators, shift(d)
 and stretch(s), which operate on time points. Note
 that shift(d) is a function, so shift(d)(t) is a function
 applied to a time point. We define these operators
 as follows:

 shift (d)(t) = d + t

 stretch (s)(t) = s - t

 The shift operator corresponds to musical opera-
 tions of delay, rest, or pause, and the stretch opera-
 tor corresponds to augmentation, diminution, or
 tempo.

 Starting with a score where time is indicated in
 arbitrary units, shift and stretch operators can be
 used to construct a mapping from score time to
 real time. For example, to perform a score at half
 speed and shifted by 10 sec, in Arctic (Dannenberg,
 McAvinney, and Rubine 1986) one would write:

 score - 2 @ 10.

 In Nyquist, one would write:

 (at 10 (stretch 2 (score)))

 Similar operations are available in many other nota-
 tions.

 The meaning (semantics) of nested operators can

 be expressed mathematically using function compo-
 sition (denoted by "o"):

 (shift(10) o stretch(2))(t) = shift(10))(stretch(2)(t))
 = shift(10)(2t)
 = 10 + 2t

 The shift and stretch operators are just special
 cases of what Jaffe terms time maps (Jaffe 1985),
 Anderson and Kuivila (1990) call time deforma-
 tions, and I call time warps (Dannenberg 1989).

 It is interesting to think about combining the ef-
 fects of different time-warp functions. For example,
 there might be an overall tempo function with sev-
 eral local rubato functions superimposed. There
 might also be perturbations of beat durations as
 suggested in the work of Clynes (1987) and Bilmes
 (1993). Time warps can be combined or nested to ar-
 bitrarily deep levels. The effect of nested warp func-
 tions is described mathematically by function com-
 position as illustrated above.

 In the general case, a time warp can be any func-
 tion that maps score time (often measured in beats)
 to real time (measured in seconds). I will use the
 term score time, but many terms have been used,
 including beat time, virtual time, local time, and
 logical time. When time warps are composed, these
 terms become relative (the "real time" of one time
 warp becomes the "score time" of another), so Ny-
 quist uses the terms local and global time as rela-
 tive terms.

 Normally, a time warp is restricted to be mono-
 tonically nondecreasing, corresponding to the idea
 that time never flows backward. This implies that
 time warps have well-defined inverses, which is
 necessary in our formalism. (The inverse of a
 function f is denoted by f-1, and defined such that
 f-'(f(t)) = t. See Figure 1.)

 It is sometimes convenient to allow the function

 to be flat (constant) over some interval (A in Figure
 1), meaning that an interval of score time is tra-
 versed instantaneously in real time. It is also conve-
 nient to allow discontinuities, indicating an inter-
 val of real time where logical time stops (B in
 Figure 1).

 The convention of expressing time warps as func-
 tions from score time to real time arises because in
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 Figure 1. A time-warping
 function (a), and its in-
 verse (b). Interval A in
 both graphs represents an
 instantaneous jump ahead

 in the score time, while in-
 terval B represents a pause
 in the score where the

 tempo stops.
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 an implementation, one normally starts with score
 times attached to sound events, and the problem is
 to map these events to real time. It is also conve-
 nient to construct a time-warp function from
 tempo specifications, because tempo changes are
 normally indicated at a particular score time rather
 than a particular real time. However, it is perfectly
 possible to develop the theory in terms of maps
 from real time to score time, as these maps would
 simply be inverses of the time-map convention we
 have adopted.

 Continuous Functions

 If the time warp is to be applied to discrete events
 such as note-ons or note-offs, the score time of the

 event is passed through the warp function to yield
 the real time of the event. On the other hand, it is
 also important to support continuous time func-
 tions such as pitch bend, amplitude, articulation,
 and other continuous parameters. Normally, these
 functions are expressed in terms of score time, so
 our goal for synthesis or real-time control is to map
 the score-time functions to real-time functions.

 To warp a function of score time, g, by a warp
 function, f, we compose g with the inverse of f to
 obtain a function of real time:

 g(f-l(t)).

 (Remember that time warp f maps score time to
 real time, so its inverse f-' maps real time to score
 time, and g is a function of score time. Therefore,
 f-' is applied to real time t to get score time, then g
 is evaluated at that point, yielding the value of g at
 a given real time.) Figure 2 shows this mapping
 graphically.

 To summarize the results so far, it is clear that
 the shift and stretch operators seen in many music
 representations and languages are special cases of
 general time-warping functions. The literature
 maintains that time-warping functions can be
 nested using function composition, so this provides
 a general way to handle nested shifts and stretches
 in conjunction with other warp operators. Finally, it
 is shown that continuous functions can be warped
 using function composition and function inverse.

 Abstraction Issues

 Once time warps are introduced, however, the "vi-
 brato problem" (Desain and Honing 1992) must be
 revisited: what is the interpretation of warped vi-
 brato? Should the vibrato rate fluctuate when time

 is warped? Previous work has generally ignored this
 problem. One (partial) solution is to "build in"
 methods for handling warps, so that vibrato would
 automatically get one treatment, envelopes would
 get another, and so on. This is convenient if and
 when the default behavior matches the composer's
 intentions, but it is usually better to allow the com-
 poser to retain complete control over how warping
 is applied.
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 Figure 2. To evaluate a
 warped control function at
 real time t, map t to score
 time and apply the con-
 trol function to yield the
 result x.

 E warp function

 t

 score time

 control

 score time

 An example of this approach is seen in most Mu-
 sic N implementations. As described earlier, the
 starting time and duration of a note can be viewed
 as simple time-warping functions. Unit generators
 that implement the note have different, specific be-
 haviors with respect to shifting and stretching. As
 the duration increases, oscillators produce more cy-
 cles, envelopes often stretch their middle segment
 (or segments) but not their beginning or end, and
 sound-file readers produce their samples without
 stretching or repeating.

 The Music N approach works reasonably well, be-
 cause there are no high-level tempo operations that
 can be applied at the score level. With only two dis-
 crete parameters, start time and duration, the op-
 tions are fairly limited and it is relatively easy to
 produce the desired behavior. What would happen
 if all notes and phrases were synthesized in a richer
 context with continuous time warping? Further-
 more, what if these time warps could be applied at
 various levels, ranging from entire compositions
 down to individual grains in granular synthesis?

 The problem is that different structures must "re-
 spond" to time warping in different ways. Although
 default behaviors are convenient, it must also be
 possible for the composer to specify exactly how a
 behavior should change (or not change) according
 to time-warp functions. Our solution in Nyquist is
 to extend the mechanisms introduced in Arctic

 (Dannenberg, McAvinney, and Rubine 1986) and
 available in Canon (Dannenberg 1989). These mech-
 anisms are quite general and can be used in many
 representation and language systems.

 In Nyquist, it is not a transformation operation
 that "knows" how to transform the result of a be-

 havior. Instead, it is the responsibility of the behav-
 ior itself to perform the transformation. We call
 this idea behavioral abstraction. This is abstraction

 in the sense that the behavior "packages" or hides
 details about how transformations are achieved.

 Also, our behaviors are abstractions in that they
 represent an infinite class of actual behaviors that
 vary according to pitch, time, duration, loudness,
 and so on.

 How can a programming language support behav-
 ioral abstraction? In Nyquist, sounds are created
 and manipulated by combining built-in signal-
 processing primitives (essentially unit generators).
 The Lisp function-definition facility is used to cre-
 ate new behaviors implementing notes, phrases,
 and entire compositions. An abstract behavior is
 simply a Lisp function that computes and returns a
 sound. An instance of a behavior is obtained by
 evaluating (applying) the function.

 To support transformation, a way of communicat-
 ing transformation parameters to behaviors is
 needed. One possibility is to pass every transforma-
 tion parameter as a function parameter to every be-
 havior. This would result in very long parameter
 lists, and a clumsy notation system. In Nyquist,
 transformation parameters are contained in an envi-
 ronment that is implicitly passed to every behavior.
 Environments are dynamically scoped, meaning
 that a nested function (the callee) inherits the envi-
 ronment from its (calling) parent automatically. Spe-
 cial forms are used to modify the environment; for
 example, in

 (transpose 2 (seq (a) (b) (c)))
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 the environment passed to seq will have its trans-
 position attribute incremented by 2 semitones.
 Also, the seq operator modifies the time map seen
 by b, so that b is shifted to the stop time of a, and
 so on.

 It is important to note that transformations such
 as transposition and time warps modify the environ-
 ment before they evaluate the enclosed Lisp func-
 tions that implement behaviors. It is critical that
 transformations operate in this manner. This gives
 behavioral abstractions a chance to determine ex-

 actly which transformations will be implemented,
 and how. For example, a fixed-length attack fol-
 lowed by a stretchable decay could be implemented
 as follows:

 (defun env ()

 (seq (stretch-abs 1.0 (attack))

 (decay)))

 The stretch-abs transformation replaces the
 stretch factor in the environment with 1.0, so that
 attack is not stretched. The decay sub-behavior
 inherits the environment from env, and stretches
 accordingly. The environment is dynamically
 scoped. Refer to Dannenberg (1989, 1997) for more
 examples.

 Most other systems have avoided the behavioral
 abstraction issue by restricting the results of func-
 tions to note lists and by restricting transforma-
 tions to operations on note attributes. Desain and
 Honing (1992) solve the problem by returning func-
 tions of multiple parameters. As in Nyquist, trans-
 formations modify parameters rather than actual
 behaviors, and the "how to transform" knowledge
 is encapsulated in Lisp functions rather than in
 transformation operators.

 Time Warping and Continuous Transformations

 If the environment provides a time-warping func-
 tion f, any discrete time point t can be mapped to
 real time simply by computing f(t). For example,
 the Nyquist pwl function computes a piecewise lin-
 ear function from a list of breakpoints. When pwl
 is warped, the default is to map each breakpoint
 into real time.

 The Nyquist sine function generates a sinusoi-
 dal signal at a given pitch and duration. (Do not
 confuse this with the Lisp sin, which is the famil-
 iar trigonometric function.) Warping a sinusoidal
 signal would distort the frequency, so in Nyquist
 the start time and end time of the sine behavior

 are warped, keeping a constant frequency in real
 time. To compute sine, a start time and an end
 time are required, and these are given by f(0) and
 f(d), where f is the time-warp function and d is the
 specified (unwarped) duration of the sine.

 If we really want the effect of warping the sine
 (as in g(f-'(t)) = (go f-1)(t)), we could write the ex-
 pression:

 (snd-compose (warp-abs nil (sine p))

 (snd-inverse (get-warp)
 (local-to-global 0) *sound-

 srate*).

 Here, snd-compose denotes function composition,
 snd-inverse denotes function inverse, and (get-
 warp) returns the time-warp function from the en-
 vironment. (Note: "function" here means function
 of time in the form of a Nyquist sound data type.
 Do not confuse this with Lisp functions.) The
 (warp-abs nil . . . ) construct removes the
 time-warp function from the environment seen by
 sine, so that the sinusoid is warped only once.
 One could even use this mechanism for FM synthe-
 sis, although the built-in Nyquist FM oscillators
 are more efficient.

 Alternatively, we can use the built-in macro con-
 tinuous-sound-warp, which is a convenient short-
 hand for the operations shown above:

 (continuous-sound-warp (sine p))

 Time-warp transformations can be composed
 with other continuous transformations. Consider
 this example:

 (warp (f) (loud (contour)

 (behavior)))

 Roughly, this expression says: compute behavior
 with a time-varying loudness given by contour,
 with everything warped according to f. In keeping
 with the behavioral abstraction concept, contour
 is computed within the environment warped by f.
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 The environment, modified by this warped loud-
 ness contour, is then used for the evaluation of
 behavior.

 Within behavior, it may be necessary to access
 current values of transformation functions, such as
 values produced by contour. The contour func-
 tion will be bound to the special variable *loud*,
 but *loud* is a function of "post-warp" real time,
 whereas behavior will generally be written in
 terms of "pre-warp" score time. Let f be the time-
 warp function and g be some transformation func-
 tion. To get the current value of g, map the logical
 "now" (0) into real time and then evaluate g at that
 point: g(f(O)). In Nyquist, this is written:

 (sref *loud* (local-to-global 0))

 or simply (get-loud), where sref evaluates a
 time function at a particular time, and local-to-
 global converts a local time to a global time using
 the environment variable *warp* as a time map. To
 offset the added complexity of continuous trans-
 forms and time warps, users are expected to access
 the transformation environment through calls to
 (get-loud), (get-transpose), (get-sustain),
 etc.

 Finally, note that an integration operator is use-
 ful for converting a tempo function to a warp func-
 tion. The time-warp function is the integral of the
 reciprocal of the tempo function. Integration and re-
 ciprocal are signal operators in Nyquist, so these
 computations can be performed numerically.

 The following computes a warp function given a
 tempo curve:

 (integrate (reciprocal (tempo-curve)))

 which can be abbreviated:

 (tempo-to-warp (tempo-curve))

 Implementation

 In previous systems, time-warp functions were spe-
 cial data types, often restricted to be piecewise lin-
 ear or polynomial in order to simplify mapping op-
 erations, inversion, and integration. It is usually
 considered important to make mapping from score
 time to real time efficient.

 In contrast, Nyquist offers a rich set of efficient
 signal-processing operations and a built-in data
 type for signal representation, so it is only natural
 to express time maps as Nyquist signals. This
 allows the full power of a synthesis language to be
 applied to the task of specifying interesting func-
 tions. For example, a piecewise linear tempo func-
 tion can be smoothed with a Nyquist low-pass fil-
 ter to achieve more graceful tempo changes.

 A number of new signal operations have been
 added to Nyquist to support time warps. These in-
 clude function composition, function inverse, and
 evaluation at a point (sref). Both composition and
 inverse can be computed incrementally in the style
 of other unit generators. Typically, low sample rates
 of 10 to 100 samples per second are adequate, so
 the computation and storage overhead is minimal
 compared to the audio signal computation. Support
 for multiple sample rates is important here.

 One weakness in the implementation is that con-
 tinuous transformations and time warps are bound
 to environment variables, which means that they
 (and their sampled representations) are retained in
 memory more than is strictly necessary. If a trans-
 formation is applied to a long sequence, every ele-
 ment of the sequence sees the same transformation
 function, and the function is not freed until the en-
 tire sequence has been computed. It should be pos-
 sible to modify the environment incrementally and
 dispose of the initial transformation samples as the
 sequence progresses. Since the transformations
 (and all Nyquist signals) are incrementally com-
 puted, this means that only a few samples would
 ever be in memory at a given time, as is the case
 with audio signals. This would also speed up func-
 tion lookups due to sref, which currently requires
 a linear search from the beginning of the signal.

 In the current implementation, transformation
 functions at a sample rate of 100 Hz take about
 24 kB of storage per minute, and the allocation of
 samples in blocks allows sref to perform its linear
 scan very quickly. It is only high-sample-rate con-
 trol functions that should cause problems. Further-
 more, no functions are computed or stored unless a
 nontrivial transformation is applied. Nyquist han-
 dles the trivial but common shift and stretch opera-
 tions and their composition as special cases that do
 not require any signal computation.
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 Figure 3. Time warp varia-
 tions: a time-warp func-
 tion (a) used in the follow-
 ing examples; a "wiggle"
 with five oscillations, not

 warped (b); and an un-
 warped compound behav-
 ior with four "wiggles" in
 sequence, with varying am-
 plitudes (c).

 Figure 4. The compound
 behavior warped.

 Figure 5. Only start and
 end points are warped; os-
 cillation frequency is
 fixed.

 (a)
 1.0-
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 0.0 , 0.0 1.0

 (b)
 1.0
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 -0.5

 -1.0

 A Catalog of Warp Behaviors

 Figures 3 through 7 illustrate a variety of ways a be-
 havior can respond to time warping. Figure 3a is a
 time-warp function used in the other figures. It was
 computed using the following definition, which
 simply adds one cycle of a small-amplitude sinus-
 oid to a linear ramp:

 (defun warpfn ()

 (sum (ramp) (scale -0.1 (ifo 1))))

 Figure 3b is an unwarped signal consisting of five
 oscillations under an envelope, a behavior I will
 call a "wiggle," defined as follows:

 (defun wiggle (amp)
 (stretch .25

 (mult (wiggle-env amp)

 (osc (hz-to-step 20)))))

 Figure 3c shows four of these wiggles in se-
 quence, each with a different amplitude. This be-
 havior is defined by:

 1.0

 0.5

 0.0

 -0.5

 -1.0 1.0

 Figure 4

 1.0

 0.5

 0.0

 -0.5

 -1.0 1.0
 Figure 5

 (defun 4wiggles ()

 (seq (wiggle 1) (wiggle 0.7)

 (wiggle 1) (wiggle 0.7)))

 Now, imagine that these four wiggles are some
 kind of control function that you want to warp con-
 tinuously. Figure 4 shows a continuous warp by
 function composition. The code is as follows:

 (control-warp (warpfn) (4wiggles))

 In this code, the control-warp function performs
 function composition on two signals.

 Now suppose these wiggles represent notes. In
 this case, the warp function should map the start-
 ing and ending times, leaving the oscillation fre-
 quency untouched. The code is as follows (see also
 Figure 5):

 (warp (warpfn) (4wiggles))

 Note that the only change from the previous ex-
 ample is to use the warp transformation rather
 than a signal-processing operation. Partly by design
 and partly by luck, 4wiggles behaves as a se-
 quence of notes when warped.

 Another possibility is that the wiggles represent
 steady vibrato. We want to stretch or shrink the vi-
 brato curve to fit exactly four wiggles from begin-
 ning to end, but the frequency should be steady
 within each wiggle. (This is not a realistic vibrato
 model, but at least it hints at the idea of fitting an
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 Figure 6. Start and end
 points are warped; wiggles
 are linearly stretched to
 fit.

 Figure 7. The amplitude is
 inversely proportional to
 the "tempo."

 1.0 2.0

 0.5 -1.0

 0.0 -0.0

 -0.5- -1.0

 -1.0 A 1.0 -2.0- 1.0

 integral number of vibrato or trill cycles within a
 metrical unit.) This is shown in Figure 6. To imple-
 ment that behavior, we start by redefining wiggle
 as vib-wiggle, as follows:

 (defun vib-wiggle (amp)

 (let ((dur (get-duration .25)))
 (stretch-abs dur

 (mult (wiggle-env amp)

 (osc (hz-to-step

 (/ 5 dur)))))))

 This defines dur to be the true duration after warp-
 ing the start and end times according to the envi-
 ronment. Then, stretch-abs is used to eliminate
 the warp function from the environment that is
 seen by the mult expression. Finally, the frequency
 of the oscillation is set to cover five periods in the
 time-span of dur.

 Using the vib-wiggle behavior, we build up a
 new sequence of four:

 (defun 4vibs ()

 (seq (vib-wiggle 1) (vib-wiggle .7)

 (vib-wiggle 1) (vib-wiggle .7)))

 Finally, the sequence is warped as before:

 (warp (warpfn) (4vibs))

 Notice the difference between Figures 5 and 6.
 Also notice that Figures 4 and 6 are similar, but (as
 is desired) oscillation frequency is constant within
 each wiggle in Figure 6, while it changes over the
 course of a wiggle in Figure 4.

 Figure 7 shows how behaviors may be linked in
 complex ways to the transformation environment.
 Here, amplitude is inversely proportional to tempo.
 The get-tempo function (not shown) computes the
 slope of the inverse of the environment's warp
 function.

 (warp (warpfn)

 (mult (get-tempo) (4wiggles)))

 As in Figure 5, each wiggle's duration is affected,
 but not its oscillation frequency. In Figure 7, how-
 ever, the tempo affects not only the wiggle's dura-
 tion, but also its amplitude.

 Comparison with GTF

 The publication of "Time Functions . . " (Desain
 and Honing 1992) led to some debate over the differ-
 ences between Time Functions and Arctic (Dan-
 nenberg 1992). Time Functions were generalized
 (Desain and Honing 1993) to become GTE After
 much discussion among the authors, the issues
 have become more clear (Honing 1995). An im-
 portant point of the Time Functions articles is the
 idea that control functions need more than one pa-
 rameter. In Arctic and Nyquist, the primary parame-
 ters are starting time, stretch factor, and time. The
 starting time and stretch factor are used to create a
 function of time, which is independent of any ob-
 ject. In GTF, a function of three parameters (start,
 duration, and progress) is generated and attached to
 a note or compound object.

 One nice property of GTF is that time functions
 are explicitly attached to objects that are subject to
 transformations such as stretching. When an object
 is stretched, the attached time functions receive a
 correspondingly larger duration parameter, and ad-
 just accordingly. In Arctic and Nyquist, there is no
 such attachment. This makes some operations sim-
 pler, such as having one behavior depend upon in-
 formation computed by another, or having several
 behaviors depend upon a single function for syn-
 chronized vibrato. On the other hand, a common er-
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 ror in Nyquist programs is to compute an envelope
 that is too short or is not time-aligned with the sig-
 nal it is intended to control. This error is harder to
 make with the GTF abstractions.

 Ultimately, the two approaches seem to have
 taken the fundamental concept of behavioral ab-
 straction in different directions. Arctic and Nyquist
 took an approach intended for real-time control
 where stretch makes sense, and duration requires
 knowledge of the future. Control functions have no
 attachment, and are strictly functions of the envi-
 ronment in Arctic or Nyquist. The creators of GTF
 took a more non-real-time approach, and intro-
 duced a clever use of closures to achieve late bind-

 ing of time and duration parameters. The GTF con-
 trol functions depend upon the objects to which
 they are attached, which in turn are subject to dura-
 tion and starting-time transformations. Given that
 Nyquist turns out to be best suited to non-real-
 time applications, it would be nice to offer more
 flexibility for specifying time and duration.

 In comparing these two approaches, perhaps the
 most important question is "Where does duration
 come from?" In Arctic and Nyquist, the behavioral
 abstraction principle is carried to the extreme. Ulti-
 mately, time and duration are determined by the be-
 havior. If you tell a behavior to start at time T, it is
 perfectly acceptable for the behavior to delay for
 some interval (perhaps it is a phrase with an initial
 rest). Nyquist semantics are a consequence of elimi-
 nating the concepts of scores, note lists, and ob-
 jects. With GTF, duration is passed from object to
 time function, and objects are not free to make tim-
 ing decisions.

 This design seems to work against abstraction in
 GTE For example, one can define a Nyquist "note"
 behavior that plays longer when the loud transfor-
 mation indicates the note should be louder (a tech-
 nique that many musicians should recognize).
 Since control functions in GTF are orthogonal to
 the events they act upon, this sort of dependency
 would be difficult to create. In my view, the design-
 ers of GTF and Nyquist have applied abstraction dif-
 ferently to achieve differing goals.

 Summary and Conclusions

 This article has discussed several aspects of Ny-
 quist and their interactions. The idea of behavioral
 abstraction is that a single abstract behavior can be
 instantiated in different contexts for any number of
 concrete or actual behaviors. An important prin-
 ciple is that "transformations" on behaviors, such
 as stretching and shifting, are interpreted in an ab-
 stract way. The details of "how to stretch" are en-
 capsulated within the abstraction. The language
 allows the programmer to specify "how to stretch"
 or how to interpret any number of other transforma-
 tions.

 Time warping or mapping functions have been
 presented along with semantics that are consistent
 with abstraction principles. Shift and stretch opera-
 tors are just special cases of general time warping.
 Finally, continuous control parameters can be inte-
 grated with behavioral abstraction and time warp-
 ing. Transformation functions are ordinary signals
 in Nyquist, so the full range of signal-processing
 and behavioral-abstraction facilities can be applied
 to transformation functions.

 An efficient implementation is possible in Ny-
 quist because s-compose, s-inverse, and s-
 integrate, the primitives on which warp computa-
 tions rest, all have fast, incremental implementa-
 tions. Furthermore, time warps and continuous
 transformations can be computed at low sample
 rates.

 New compositional techniques are facilitated by
 the unification of audio signals, control signals,
 time warping, and transformations. For example,
 tempo changes can be smoothed with low-pass fil-
 ters; the rate of a drum roll can track a pitch con-
 tour analyzed from speech input; and Doppler shift
 and phasing effects can be achieved using arbitrary,
 even audio-rate synthesized, control functions.
 Time transformations in Nyquist are powerful
 enough to express new concepts such as expressive
 timing offsets (Bilmes 1993). The encapsulation of
 behavioral details offers the composer a powerful
 new tool for expressive control. We look forward to
 the exploration of these possibilities.
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