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Does music performance allude to locomotion? A model of final
ritardandi derived from measurements of stopping
runners®

Anders Friberg® and Johan Sundberg?
Royal Institute of Technology, Speech, Music, and Hearing, SE-100 44 Stockholm, Sweden

(Received 20 November 1997; revised 30 September 1998; accepted 22 October 1998

This investigation explores the common assumption that music and motion are closely related by
comparing the stopping of running and the termination of a piece of music. Video recordings were
made of professional dancers’ stopping from running under different deceleration conditions, and
instant values of body velocity, step frequency, and step length were estimated. In decelerations that
were highly rated for aesthetic quality by a panel of choreographers, the mean body velocity could
be approximated by a square-root function of time, which is equivalent to a cubic-root function of
position. This implies a linear relationship between kinetic energy and time, i.e., a constant braking
power. The mean body velocity showed a striking similarity with the mean tempo pattern of final
ritardandi in music performances. The constant braking power was used as the basis for a model
describing both the changes of tempo in finghrdandi and the changes of velocity in runners’
decelerations. The translation of physical motion to musical tempo was realized by assuming that
velocity and musical tempo are equivalent. Two parameters were added to the model to account for
the variation observed in individuatardandi and in individual deceleration$l) the parameteq
controlling the curvatureq=3 corresponding to the runners’ deceleration, &)dthe parameter

veng for the final velocity and tempo value, respectively. A listening experiment was carried out
presenting music examples with findlardandi according to the model with differemnfvalues or

to an alternative function. Highest ratings were obtained for the modelgritB andg= 3. Out of

three functions, the model produced the best fit to individual measiteedandi as well as to
individual decelerations. A function previously used for modeling phrase-related tempo variations
(interonset duration as a quadratic function of score posifimaduced the lowest ratings and the
poorest fits to individuatitardandi. The results thus seem to substantiate the commonly assumed
analogies between motion and music. 1899 Acoustical Society of America.
[S0001-496629)01402-2

PACS numbers: 43.10.Ln, 43.75[8v/JS]

INTRODUCTION manifested by the common use of motion words in descrip-
tions of music, such agnto, andante, correntéslow, walk-
Music performance is often regarded as an area of alng, running. Truslit (1938 even suggested that the per-
most unlimited variability; different artists play the same foymer must imagine an inner motion in order to produce a
piece of music in very different ways. On the other hand, oufyoo4 performance and that the listener must “hear” this in-
attempts to synthesize music performan@eg., Friberg, ner motion in order to appreciate the music: “Everse-
1995a; Sundberg, 198®ften demonstrated that if a given gcenqoand decrescendo every accelerandoand decele-
performance parameter was varied beyond a narrow rangg, 4 s nothing but the manifestation of changing motion

mus!cf’;\IIy unacceptable _performances were _obt.alned. Mosénergies, regardless of whether they are intended as pure
musicians agree on the importance of, e.g., finding the ”ghﬁwovement or as expression of emotiorCited from the

e s ey oo vy st EDOISN Synopss y Rep093| T comection becer
ensembIFe) What is thepbasis for such aareement? Why is thrrewsic and motion has been discussed in a relatively intuitive
' 1 ag ’ y way in numerous articles and essays partially reviewed by
exact value or change of tempo so important to what is muT-Shove and Repf1995
sically acceptable? Is it possible that we use a common ref- . : . .

erence taken from our extramusical experiences? Two can- An experimental attempt to test the possibility of a direct

didates for such a reference have been suggested: speech &metctnl)n 1ggtwe_?;1 must|_c allr;d motlotr: was donte db)t/) Stl:]nd'
motion. By comparing the stopping of running with the final erget al. (1992. The vertical-force patterns exerted by the

ritardando, this article tests the hypothesis that tempofoot ciﬂ thf grolutnd q \;vere mgelwurled forl dlfferep: ga'tST?]nd
changes allude to locomotional patterns. were then transiate q 0 sound-leve eny; g%es ortones. esg
Music is commonly associated with motion. This is [ON€S Were repeated in sequences with different tempos an
evaluated in three listening experiments. In one experiment,
the listeners were asked to describe the examples in any
3"Selected research articles” are ones chosen occasionally by the Editorferms Responses relating to motion occurred in up to 50% of
in-Chief that are judgeda) to have a subject of wide acoustical interest, ) .
and (b) to be written for understanding by broad acoustical readership. the total number of responses in some cases, and was more

YElectronic mail:{andersf, pjohai@speech.kth.se common(1) when the tone interonset time was the same as
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the original step interonset time ar{@) at tempos corre-  (a) Quadratic 10l of x
sponding to about 600-ms interonset time. In another experi-
ment, the listeners rated the sequences along visual analogt ,
scales for each of 24 motion adjectives. The result showec
that the tone sequences were classified in qualitative accor &
dance with the original gaits. Thus, information on locomo-
tion characteristics could be transferred to listeners by using '
the force patterns of the foot as sound-level envelopes. s
This investigation represents another attempt to directly
link locomotion to music performance. The overall strategy ™
was to find out if the tempo changes in findghrdandi can )
be described by the same mathematical model as the velocit
changes during runners’ stopping. The article first reviews §3
mathematical representations of tempo and different models ?
that have been used for describing tempo variations in music '
performance. Then, measurements and visual assessments °*
runners’ decelerations are presented and compared with pre
vious measurements of finatardandi. After this, a math- Square root tempo of x Linear tempo of t
ematical model of the finaitardando, derived from the run- .-
ners’ data, is presented and evaluated. Finally, this model i¢ | |
applied to individual cases of runners’ decelerations and of N
final ritardandi.
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A. Representation of tempo

. . . (d) Cubic root tempo of x Square root tempo of t
Different strategies for representing tempo data have ,_ ..

been used in the past. Most researchers have ss@@ po- ol
sition as the independent variable. In other words, each note _ |
value is represented by a corresponding distance along ag |
axis representing score position. For example, a whole note
. . . 1
is represented by the distance 1, a half note by the distanc
1/2, etc. Alternatively, the shortest note value occurring in °7 ¥
T[he piece is used E_is_the unit for the score _pOSItIOﬂ axis. Th_unsi’lG. 1. Comparison of different methods of representing tempo changes
if the shortest unit is a 16th note, the distance of 16 Willguring the finalritardando using the indicated four simple functiof&)—
represent a whole note. The commonly used tenamminal (d)]. The columns show these functions plotted against alternative abscissas:
duration and deadpan duratiorare both used for durations 'O!as a function of positiox (left column, tempo as a function of position
. x (middle column, and tempo as a function of timeright column.

that exactly correspond to note values and are thus equiva-
lent to score position. d ¢ funct £ i The choi f

Another possibility is to usdime for the independent expressed as tempo as a function ol ime. 1he choice o

variable. This was recommended by Tod892, 1995, who variables obviously affects the shape of the curve pro-

argued that ongoing time is more easily perceived than théoungly. tA Ehangeﬁof thde [n(rjfperﬂdent varlzlatblg from score
more abstract score position. There is, however, a computé’-OSI lon to llme(ml - andrig ::o uan)sresu S 'T a mhore th
tional problem when a given tempo curve, expressed as goncave or fess convex curvaiure. or exampie, when the
function of time, is applied to a music example that by defi-temIOO IS a sq_uare-ro_ot function of score po_smon, it becomes
nition is expressed in terms of score position. Therefore, it i linear function of time. A quadratic relation between IO

necessary to transform the tempo curve into a function oﬁnd score positior(top-left pane) has been used several

score position. Unfortunately, such transformations have afjmes in the pasie.g., Todd, 1985; Repp 1992b; Friberg,

analytic solution only for some simple mathematical expres—lg%b' Note that this curve, when transformed into a curve

sions. showing tempo versus score positigtop-middle panel
A dependent variabléempg defined as the inverse of starts with a convex and ends with a concave curvature.

\

0 0+
0 0 t

X 1

tone interonset intervglOl), seems a natural choice. How-
ever,beator tone IOl have also been used.

Figure 1 shows some simpitggardando curves and how Sundberg and Verrilld1980 analyzed the characteris-
they appear in three different representations. The left coltics of the finalritardando in music performances. They
umn of panels in Fig. 1 shows tone IOl as a function of scoraneasured tone IOIs in 24 performed finghrdandi in re-
position x, the middle column of panels shows the samecordings of baroque music and computed an average final
curves transformed into tempo as a function of score posiritardando profile for tempo versus time. Out of these data,
tion, and the right column of panels shows the same curvethey derived a model consisting of two phases, each of which

B. Previous models of tempo variations
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showed a linear decrease of tempo when expressed as a fud@BLE I. Data on the dancers who performed the analyzed decelerations.
tion of score position. The length of the second phase corre=
sponded to the last musical motif of the piece.
Kronman and Sundber@l987 found that the average M1 Male 181 75
final ritardando profile could be rather accurately approxi- M2 Male 180 67
. . . F1 Female 170 49
mated by one single square-root function, thu_s aban_donmg 2 Female 165 53
the two-phase model. They further related this function to
what they assumed to be an accurate description of the de-
crease of the footstep frequency of a stopping runner, proscore positioriFig. 1(c) middle- and right panelsthus simi-
vided there was constant body deceleration and constant stef o the model presented by Kronman and Sundberg
length. This similarity suggested an interesting analogy be(1987).
tween musical tempo and step frequency. It may be noted  gyilding on Todd’s idea of a quadratic relation between
that the step frequency is equivalent to velocity if the step[empo and score position, coauthor A.F. developed a model
length is constant. However, Kronman and Sundberg useghat related tempo changes to the hierarchical phrase struc-
the ritardando data by Sundberg and Verrillo, expressed asyre (Friberg, 1995h The model allowed for variations that
instant tempo versus time, and compared these data with tri?pically can be observed between different experts’ perfor-
deceleration model expressed as step frequency versus pogiances of the same piece. Thus, when tested against Repp’s
tion. A simpler analogy would be to use time as the indepenmeasurements of the 28 performances Toumerej the
dent variable in both cases. If this is done, the tempo curvenodel successfully accounted for the tempo variation at the
for the final ritardando becomes much less similar to the phrase |eve| Observed among these performances_
model, as in this case the step frequency comes out as a sSymmarizing, the models above have described the
linear function of time. shape of the tempo variations @3 a linear change of tempo
Feldmanet al. (1992 investigated curves of performed yersus score positioii2) as a quadratic change of 10 versus
accelerandiand ritardandi in five examples that were se- score position7 0[(3) as a linear Change of tempo versus
lected by David Epstein from CommerCia”y available reCOfd-time_ These models were based mere|y on assumptions re-
ings. The authors developed a simple force model of physigarding physical motion. Thus, no data were collected from
cal motion that assumed tempo to be equivalent withreal decelerations as performed by, e.g., human runners. This
velocity. They regarded smooth beginnings and endings imtack of reference to motion data was pointed out by Desain
portant characteristics of such tempo changes, and therefoggd Honing(1996, who also mentioned the likely influences
proposed that tempo should be expressed as a quadratic & musical structure and global tempo on the fimir-
cubic function of time. These functions correspond to a lin-danda Although human locomotion has been studied in sev-
ear and a quadratic change of force with time, respectivelyeral investigationdMargaria, 1976; Cavagnat al., 1988;
However, in the subsequent analysis, they used beat duratigXlexander, 1995; Nilsson and Thorstensson, 1987efAal.,
as a function of score position instead of tempo as a function992, the characteristics of stopping locomotion seem to
of time, thus suggesting that these two completely differenhave attracted little attention. Hence, it seemed necessary to
representations could be regarded as equivalent. They fittgserform actual measurements of runners’ decelerations.
their data, expressed in this new fofbeat duration of score
position), to linear, quadratic, or cubic functions. They found Il. RUNNERS' DECELERATION
the two latter alternatives reasonably appropriate to approxi-
mate these data and falsely concluded that their force mode|. Methods
neatly accounted for the observed tempo profiles. )
Repp (19924 measured the timing of 28 performances 1- Deceleration measurements
of Robert Schumann'sTraumerei The accelerande- Professional dancers, two males and two females, were
ritardandoshape of a salient, six-note motif was successfullyused as subject§able ). Their task was to run at predeter-
modeled by expressing tone 10l as a quadratic function ofnined initial-step frequencies along a marked straight line
score position. He also carried out a perceptual evaluation aind to stop their running at a marked point along this line.
this function applied to synthesized piano performances ofrhe subjects were not asked to think of any musical models
the same music examp(&epp, 1992h for their running and deceleration; actually, music was not
Todd (1985 presented a model of phrase-related tempamentioned during the instruction of the subjects. Although
changes in music performances. In this model, tone IOIshe subjects were professional dancers, neither their running
were expressed as quadratic functions of score positiomor their decelerations appeared special in any sense.
Later, he proposed a modified versi¢hodd, 1992, 1996 The initial step frequencies were given in terms of
based on an analogy between velocity in physical motion andcoustical click signals provided by a metronome connected
tempo in music performance, thus implying equivalence beto a loudspeaker. This signal was presented before the sub-
tween physical position and score position. He simply asjects started to run and continued during the first part of their
sumed the deceleration and acceleration forces to be comdnning. Two step frequencies were selected, 2.9 and 4 Hz
stant, which implied linear variations of tempo as a function(interstep intervals 340 and 250 ms, respectivelye point
of time (see also Longuet-Higgins and Lisle, 1988 can be  at which the subjects were supposed to start the slowing
noted that this case corresponds to a square-root function down was either free, i.e., left to the subjects to decide, or

Dancer Sex Heightcm) Weight (kg)
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shown by a mark on the floor, 4 @ m from the end point. TABLE Il. Ratings, averaged across repetitions and judges, of the aestheti-
Each condition was recorded five times, but only two of thec@l duality of the decelerations, listed in rank order.

subjects used .the free condit.ion. . . Initial-step Deceleration Mean
The experiment was carried out in a large hall. Stripes of frequency  distance condition rating  s.d.
sticky reflective tape were fastened to the floor perpendicularRunner (H2) (m) (cm) (cm)  Rank
to the direction of running, 1-m apart at the beginning of the™ - 29 - 6.3 25 1
running path, and at 0.1 m along the final 10 m. Such tape w1 29 4 6.3 292 2
stripes were also fastened to the subjects’ ankles and hips as M1 4 7 6.2 25 3
references. The footsteps were picked up by an audio micro- Eg g'g ]f:gz g'g gg g
phone and also by a set of accelerometers placed on the floor g2 4 free 58 1.9 6
at 2-m distances along the final 10 m of the running path. F2 4 free 5.6 2.7 7
The audio and accelerometer signals were recorded on a E} g'g g:g 2'3 gg g
TEAC PCM data recorder. The running was filmed by a 2 4 4 4.8 21 10
video camera and recorded on a VHS recorder. F1 4 free 4.4 25 1
By displaying the video recording frame by frame, the FMlZ 24 ° ;ree ;52 533 113?
step length could be determined with an accuracy of approxi- M2 4 7 27 18 14
mately =3 cm. The audio and accelerometer recordings were M2 2.9 4 2.6 2 15
M2 4 4 15 1.8 16

analyzed using a waveform editing prograf@oundswell
Signal Workstatiohallowing an accuracy of about5 ms in
determining the time intervals between the impacts of the
footsteps.

Figure 2 shows the ordered-mean ratings for all the de-
celerations. The difference in mean rating was small between
the stimuli that were rated high and greater between those
which rated low. Thus, the curve showed a slight trend to a
Although the runners were all professional dancers, ildiscontinuity between rank-order numbers 12 and 13. One
seemed unrealistic to prEC|Ude that they invariably performe%a|e dancer, M2, produced all four lowest-rated decelera-
decelerations that completely corresponded to their artistiions. Most of these four decelerations exhibited irregulari-
intentions. As it seemed unwise to base a model of finaties in step-frequency patterns during the deceleration, as
ritardandi on accidentally pathological examples of runners’seen in the right-top graph in Fig. 3, and were omitted in the
decelerations, an evaluation experiment was run. Using th&)mputation of average decelerations.
video recordings from the experimental session, an initial
assessment of the aesthetical overall quality of the decelera- )
tions was carried out by a highly experienced teacher of eug' Deceleration patterns
rhythmics at the Royal College of Music, Stockholm. The Figure 3 shows instant-step frequen@yverse of inter-
purpose of this pretest was to reduce the number of decebtep durationand the associated step length for the two de-
erations in the subsequent analyses. celerations that the judges rated highest. To give an idea of
Eight decelerations from each of the two step frequenthe variation in the data, the two lowest-rated decelerations
cies were selected. The selection was made so as to obtairage also included in this figure. The decelerations mostly
maximum variation with regard to subject, rating values ob-included six to ten steps. The step-frequency patterns varied
tained in the pretest, and deceleration-distance conditionsvidely among the 16 decelerations, some decreasing slightly,
These 16 decelerations were copied into a video test tape,
where each deceleration appeared three times. They wer- 7
separated by 7-s pauses. The test took about 15 min and wz
preceded by eight practice trials. The tape was presentedt ¢ *
six experienced experts in choreography and/or eurhythmics
The judges were asked to rate oversdkthetic qualityf the 5 4 N
final deceleration, taking into consideratiéorm and bal- o
ance For each of the 48 decelerations, the judges put a marb% 4
on a 10-cm line on an answer sheet where the left end rep_ .
resented “Extremely unaesthetic” and the right end “Ex-
tremely aesthetic.”

2. Rating experiment

g 31
=

2 -
B. Results .
. . 1 ]
1. Rating experiment
Table Il summarizes the test result in terms of ratings ¢ s e e
averaged across replications and judges and the correspon 1 2 3 45 6 7 8 9 10111213 14 15 18
ing standard deviations. The table shows that the judges dit Rank order

r?Ot Cl?arly prefer any particular step frequency or deceleragig, 2. Rank-ordered mean ratings obtained from the experiment where
tion distance. experts rated the aesthetical quality of runners’ decelerations.
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FIG. 3. Instant-step frequendfilled circleg and step-lengtkopen trianglespatterns for the two highestieft) and the two lowestéright) rated decelerations.
The initial values of step frequend¥), deceleration lengtkL), and the mean ratingMRt) of the deceleration are shown above each panel.

some remaining basically constant, and some even increagspect to the associated position and time, respectively. Ve-
ing toward the end of the deceleration, thus clearly negatingpcity values between data points were obtained by linear
the possibility that the change in step frequency serves as thaeterpolation. The means were computed by sampling these
model for the tempo change in finatardandi. The step interpolated normalized curves at 20 equidistant steps of po-
length, by contrast, decreased gradually toward the end dition or time.
the deceleration in all cases. Thus, the slowing down was The resulting normalized mean velocity as a function of
achieved mainly by decreasing the step length, an observaormalized position is shown in Fig(&. The values of 0
tion which is in good agreement with previous findings onand 1 on the abscissa correspond to the starting and the ter-
the relation between step length and speed of locomotiomination of the deceleration, respectively. The bars mark the
(Alexander and Maloiy, 1984; Cavageaal., 1988. 95%-confidence interval for the estimation of the mean at the
Figure 4 shows velocity versus distance to the point ofsampled positions.
stop for the same decelerations as in Fig. 3. Instant velocity = The mean-velocity pattern, when plotted as a function of
was estimated at each step by dividing the step length witlhormalized time, is very similar to that of the normalized
the step duration. The position of each velocity estimatiormeanritardando curve of Sundberg and Verrill@ 980, see
was taken as the middle value between two step position$zig. 5b). This supports previous suggestions that there is
The number of velocity estimations ranged from six to eightequivalence between velocity and tem@odd, 1992, 1995;
points and the estimated deceleration distance ranged froffeldmanet al, 1992. Note that, for reasons of comparison,
5.9t0 8.2 m in the 12 decelerations. The normalized velocitythe abscissa is normalized time. The match was obtained
versus normalized position for all 16 decelerations are showafter scaling the abscissa of the velocity curve by a factor of
in the Appendix, Fig. A2. 1.13. This value was found on a trial-and-error basis. The use
As the number of velocity data for each decelerationof a scaling factor is motivated by the fact that, obviously, a
was comparatively small, an average was computed for thatardando curve can never reach a normalized tempo value
12 highest-ranked deceleratiofmean ratings>4). Two  of zero since it corresponds to an infinite note duration.
average-velocity curves were computed: one curve with po- Kronman and Sundber 987 assumed that the decel-
sition and one curve with time as the independent variableeration force is constant during a deceleration of runigeg
In both cases, each of the 12 velocity curves was normalizedlso Todd, 1995 This implies that velocity is a straight line
with respect to the first estimated-velocity value and withif time is used as the independent variable. As seen in Fig.
1473 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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FIG. 4. Instant-velocity patterns for the decelerations shown in Fig. 3. The initial values of step fregbgragceleration lengtkL), and the mean rating
(MRt) of the deceleration are shown above each panel.

5(b), this was not the case. However, the square of the vethat professional dancers are a typical subjects as they have
locity, i.e., the kinetic energy, is close to a straight-line func-been specially trained to move in synchrony with music.
tion of time as shown in Fig.(6). Note that the straight-line However, professional dancers share with almost anyone the
approximation of the data point passes very close to the coexperience of moving to music, since dancing is a very com-
ners of the square in this figure. The close agreement banonly enjoyed form of social life.
tween the data points and the line implies that the decelera- To rate the aesthetical quality of a runner’s deceleration
tion powerwas approximately constant throughout the entireimplies the task of giving a global assessment of a stimulus
deceleration. Individual velocity curves will be analyzed be-possessing many dimensions, such as coordination of limb
low in terms of how well our model fits the data. movements, posture, et¢Todd, 1983. In our case, this
would have contributed to the comparatively high standard
deviations of the ratings. The judges may have attributed

An important question is to what extent the obtaineddifferent degrees of importance to various aspects of a given
velocity curves were specific to the experimental conditionsieceleration. Still, the rating experiment seemed to serve its
in the recording session. Obviously we would have obtainegnain purpose, viz., to identify decelerations that appeared
quite different deceleration curves if the dancers had beeparticularly unaesthetical to expert judges.
running on a slippery surface, such as ice. The recordings When plotted in rank order, the distribution of the rat-
were made in a gymnasium, where the floor has a comparangs showed a slight trend to an elbow-like curve. It is inter-
tively large friction and thus should not have caused anyesting that a similar curve was found when, in a quite differ-
abnormality in the deceleration data. Furthermore, in the ratent experiment, experts rated hoarseness and other voice
ing experiment no preference was observed for any specificharacteristics in children’s voicéSederholmet al, 1993.
condition regarding step frequency or deceleration distancen both these rating experiments, the notion of acceptability/
Thus, our mean-velocity curve can be assumed to be reasoonacceptability of a multidimensional stimulus was probably
ably representative for the stopping of running. relevant.

It could be argued that dancers are biased subjects in an
experiment with the present aim, being prone to adopt thdll- MODEL
typical patterns of classical choreographic art. On the other A basis for the construction of our model for firvétar-
hand, in the video recordings no tendency to use any specidandi was the assumption that the deceleration power was
locomotion patterns could be seen. It could also be arguedonstant in a runner’s deceleratioride supra. This implies

C. Discussion of decelerations
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0.9 4 s — Mean velocity the quadratic 101 function. The final tempo was fixedvat=0.3. These
' A 2 S&V Meantempo five curves were used in the listening experiment.
2 9 081 . . . . . . .
g g A that the kinetic energy is a linear function of time and, since
Fgg 0.7 . ki_netic energy is proportional to velocity _square_d, velocity
3 e will be proportional to a square-root function of time. Let
= ‘_é 06 4 A be velocity(temp9g, x be position(score positioj then
E S
S 2o dx
Z Z o051 =~ 1
V=4 : (1)
0.4 1 Primarily for practical purposes discussed aboveas cho-
0 ] sen as the independent variable. Integratingith respect to
0 02 o4 06 08 ) t, solving fort, and substituting in Eq. (1), we obtain
(b) Normalized time v(X)~x3,
!9 Thus, velocity(tempg is proportional to the cubic root of
0.9 - o Kinetic energy position (score position Reinspection of the individuai-
3 os ] — Linearfit tardandianalyzed by Sundberg and Verril{a980 revealed
‘g: : variation with regard to the overall curvature. To account for
b 071 this variation, a curvature parametgwas introduced
T 06
e ] v(x)~xa,
5 051 . )
S o4l By changing the constanf a number of different curvatures
s can be obtained, including the runners’ mean deceleration
% 031 (g=3) as well as the previously mentioned square-root
< 021 function (q=2).
o1 ] Unlike velocity in locomotion, the tempo never reaches
y zero in music, if tempo is defined as the inverse of tone I0I.
0 — T T This implies the need for a second parameter, the final tempo
0 02 04 06 08 ! The resulting model of the temp@) as a function of
(© Normalized time Uend- 9 P

score positionx) was defined as
v(X)=[1+ (vd 4 1)x]*. 2

Here, tempo and.,qare normalized with respect to the pre-
ritardando tempo v, and position is normalized with re-

FIG. 5. (a) Normalized mean velocity for the 12 highest-ranked decelera-ga0t 1 totalritardando length measured in score units.
tions as function of normalized score position. The bars mark the 95%-

confidence intervakb) Normalized mean velocity for the 12 highest-ranked S_C0re positiomz 0 CorreSpondS to the start pOSitiOl’l of the
decelerations as a function of normalized tigselid line) and mean nor-  ritardandoandx=1 to the onset of the last note. Thuss+1
malized ritardando tempo versus normalized time according to Sundbergat x=0 andv=v.,q at Xx=1. Figure 6 shows the resulting

and Verrillo (1980. The former curve was obtained after scaling the time ; —
values by a factor of 1.13, see the teix). Squared normalized mean veloc- tempo curves for four differerg values. The values af=1,

ity for the 12 highest-ranked decelerations as a function of time. The lindd =2, andq=3 CorrESpon_d tdéa) a linear fun_Ction ok, (b) a
shows the best linear fit. square-root function af (i.e., a linear function of), as pro-
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posed earlier by Kronman and Sundberg, and Todd,(@nd TABLE Iil. Music examples used in the listening experiment. The tempo
the approximation of runners’ deceleration, respectively. before theritardando (v, and at the endye,g, normalized with respect
. . . {0 v, are also listed.
The translation from the continuous curve to discrete
tones can be realized by integrating the inverse of the tempo

Upre
function in Eq.(2): Music example Abbreviation (shortest notes)s v eng
1 dt J. S. Bach: Eng. Suite 2 Prel.,  E2P 6.48 0.3
f _ZJ_ZJ [1+(Ugnd_l)x]*1/t1_ last 5 meas.
v dx J. S. Bach: Wohltemp. clav. | WIP 4.47 0.4
—_..q _ P— . Prel. 1, last 5 meas.
Let !‘_—Uend 1. Then, we obtain time as a function of score 0" ¢econd sequence m2 5 04
position (Db4—C4-Db4—C4-Db4
q(1+kx) @ Da—q . , —C4—,...,Db4, 21 notes total
The integration constant was determined by setti(@) Four differentq values g=1,2,3,4) were used for the

=0. The 10l of a tone is given by the time difference for the ritardando model[Eq. (2)]. For the phrasing curve with 1Ol

x values corresponding to the onset of the torg) (o the  as a quadratic function of score position, the expression
onset of the following tonex,).

|O|:t(X2)_t(X1) U(X):

A(L1+kxp) 4~ V/A—q(1+kxy) @D
- (q—1)k . 4 was used, see Fig. 6.
) ) , The preritardandotempo @), ritardandolength, and
The adyapte}ge of usingx) to determine the tone durations ¢, tempo ., were fixed for each music example
IS that it is mdepgndent of note values. For exa_lmple, foulihroughout the tegtsee Table I, and determined according
sixteenth notes will add up exactly to the duration of one,; iha advice of two professional musicians, Lars Frydad

quarter note. It means that E(#) can be applied on each \14nica Thomasson, who listened to different alternatives. In
voice in a polyphonic example and at the same time keep thgy oy amples; theitardando started at the first note onset

synchrony. This is not the case if IOl is obtained by invertingoccurring at least at 1.3 s, as measured in ritezdando
the tempo value obtained from the continuous tempo CUV&te duration preceding thé last note.

at, e.g., the onset position of the tone.

1
(L/vgnge1)x%+1"

Vend™ 0

o When informally listening to the examples, it was found
The model[Eq. (2)] has the advantage that it is easy 05y the O] of the penultimate note was important to the
transform, if time instead of position is preferred as the iN-herceived magnitude of thetardando. The method de-

de_pendent var_iable. Tempo as a f“”C“P” _Of time can be_ Olscriped abovd Eq. (4)] for translation of the continuous-
tained by solving Eq(3) for x and substituting the result in o function to discrete-note 101 did not allow specifica-

Eq.(2) tion of an exact value for the lengthening of the penultimate
v(t)=[1+ (I -1)t]Ha-D, note (i.e., if the ven=0.4, the duration of the penultimate
. . . will not be DR=1/0.4). Therefore, a second normalization
N,‘irt]etrt]hat t|h|s efqu;\tmn IS Zs;entlally the same as(BQ. a5 performed so that the 101 of the penultimate note was
Wi e value ofq decreased by one. SEt 10 1/ end Uprd)-
Special attention also had to be paid to the last note. Its
A. Perceptual evaluation of the model note value is sometimes the same as that of the preceding

note, but sometimes considerably longer. In the latter case,

A listening experiment was performed to assess the présg fyrther prolongation of the last note is necessary. On the
ferred curvature valug in different music examples. The contrary, such long final notes can even be shortened in a

previously mentioned curve with 10l as a quadratic functione| performance. In the test, the duration of the final note
of score position was included as an additional alternative. ;o simply set to 1.25 times the 101 of the penultimate note
(m2 examplé However, if the last note was already longer
than this, it was left unchangd&2P and WIP examplgs
Three different music examples were used, two excerpts  Lacking information about the relation between tempo
from pieces by J. S. Bach and one sequence of two alterna&nd dynamics in finatitardandi, the music examples were
ing notes a minor second apart, see Table Ill. In both Baclplayed on sampler synthesis of a harpsich@edmpleCell.
examples, theaitardando was applied to an unbroken se- The ritardando model was implemented in theIRECTOR
guence of notes of equal note values. These examples wexJsICESprogram(Friberg, 1995a0n a Macintosh computer.
chosen for evaluating thatardando in musically realistic  The examples were recorded on a DAT tape with some arti-
contexts, while the minor second example was chosen tficial reverberation'Yamaha REVY. All judges listened to
attain a minimum of musical content without destroying thethe tape over earphones adjusted to a comfortable listening
perception of theitardando curve. When informally listen- level.
ing to the examples, the authors found that a simple tone The test tape contained 51 examples. The first six ex-
repetition was not enough to differentiate the curvatures. amples were selected from the following and were used for

1. Stimuli and procedure
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practice trials only. The remaining 45 examples (5 70 L L L . .
curves<3 music examples 3 repetitions) were presented in

random order. The entire test tape took 17 min. 65 L
The judges were asked to mark on a 10-cm-long visual ] .

analogue scale on an answering sheet how musical theo o - I I L

found the performance of thétardando. The endpoints of 7§ ] I -

the line were labeled “extremely good” and “extremely < ss5 4 I 3

bad.” The listeners were also instructed to try to ignore the< . I

performance of the music preceding ttimrdando as well 50 » -

as the length of the final note, since these parameters did nc
change with tempo curvature. The rating values used in the 45 -
subsequent analysis was defined as the length in mm fror 1

the extremely bad endpoint, i.e., the bett#ardandg the 40 T T T T r
. . i =1 =2 g=3 g=4
higher the rating value. QUadialic  ndarp)  lineard  square  ctbic
root(t) roof(t)
Ritardando shape
2. Judges

FIG. 7. Overall ratings, averaged across listeners, music examples, and rep-
A basic hypothesis was that thitcardandoalludes to the  etitions, of the different curvatures used in the test. The bars indicate the
stopping of locomotion and hence should be familiar not*°S!iVe Parts of a 95%-confidence interval.

only to professional musicians playing classical repertoireficyity of the test, the main effect of curve was highly sig-

Therefore, 19 students were used as judges, all taking thgficant (p<0.0001), indicating that the judges clearly could
course in music acoustics at the Royal Institute of Technolyifferentiate the curves.

ogy. After the test, they answered a questionnaire about their  The main effect of music example was significapt (
musical background. The questionnaire asked if they had ex=0.0001); thus, theitardandi were rated differently de-
perience performing music, if so, what instrument, howpending on the music examples. There was also a significant
many years of performing, how many hours per week, and isffect of repetition p<0.015). No interaction terms were
which music styles. In addition, they could make any generakjgnificant. The main effect of music example and repetition
comment about the test. disappeared when the m2 example was excluded from the
According to the answers from the questionnaire, moshnalysis. The fact that there was a strong effect of repetition
of the judges could be considered as amateur musiciangnly in the case of the m2 example may indicate that this
Nine judges reported that they had some experience of clagxample had a strange musical content to which, however,
sical music. One of these had professional experience astfe |isteners gradually became accustomed.
classical musician. Most judges found the test quite d|ff|CU|t, The mean ratings for the different curvatures are shown
except the professional player. Thus, the task was difficulin Fig. 7. They reveal that the two curvatures that received
for listeners lacking previous experience with performancehe highest ratings originated from the model with 2 and
of ritardandi on a professional level. g=3. The first value corresponds to the model supported by
Kronman and Sundber(l987 and by Todd(1992, 1995,
while the second value corresponds to the curvature derived
from runners’ decelerations. Both for higher and loveer
Using the judges’ ratings as the dependent variable, thealues and the quadratic 101, the mean ratings were lower.
results were submitted to a repeated-measures analysis ©his was confirmed by a highly significant contrast analysis
variance performed by theUPERANOVA 1.11 program for resulting from a comparison of the cagsps2 andg= 3 with
Macintosh. The within factors were 5 curves the three remaining alternativep<0.0001).
X 3 music examples 3 repetitions. Despite the reported dif- Figure 8, showing the means for each music example

3. Results

[T cquadratic 10

g=1 linear(x)

B a=2linear(t) FIG. 8. Mean ratings for the interaction of music ex-
B -3 square root(t) ample and type ofitardando curve. The bars indicate
=4 cubic rootd) the positive parts of a 95%-confidence interval.

Mean rating

Music example
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FIG. 9. Left panel: The moddkolid line) fitted to the meanmitardando curve (diamond$ from Sundberg and Verrillo. Right panel: The modsblid line)
fitted to the mean velocity curvediamond$ of the runners’ deceleration. Note that time rather than position is used as the independent variable. The
model-parameter values used and the resulting determination coefficient are also shown.

and curve, offers a more detailed representation of the re2. Individual ritardandi measured by Sundberg and
sults. First, it can be noted that for all curves the minorVerrillo
second example was rated much lower than the other ex- The model was also fitted to individuatardandi taken

amples. Obviously, despite the instruction to concentrate o?rom the original raw data by Sundberg and Verrillo. In a

theritardando, the judges were unable to disregard the mu- . . . S

. . . . ritardando, local lengthenings and shortenings of individual
sical context. Second, the maximum rating was obtained fo{ones frequently oceur. depending on musical context. Such
theg=2 curve in the E2P example and for the 3 curve in 9 y , dep 9 :

the WIP example. This suggests that the optimum curve iIsocal departures from the mairitardando curve increase the

dependent on the music examole. A contrast analvsis co Scatter in the fitted-parameter values. Therefore, to improve
afin 2 for E2P andq=3 f(ﬁ WIP with a=3 foryEZP rT%he reliability of the fitted-curvature data, onhtardandi

P g_q vith g . with a smooth shape were selected, which contained a mini-

and q=2 for WIP showed a barely significant difference

(p<<0.04). Further testing with more-skilled listeners is mum of |n_d|V|duaI notg departure_s. Thus, only th? perfor-
needed to further confirm this hypothesis. mances with at least six consecutive final notes with mono-

tonically increasing 10Is were used. In this way, 12 final
ritardandi were selected out of a possible total of 22, all by
J. S. Bach, see Table IV. Apart from the present model, two
other alternatives were tried. As note 10l is frequently as-
In a previous section, the runners’ deceleration wassumed to be a quadratic function of score position, one al-
found to fit well with the averagetardandocurve. Here, the ternative was a quadratic polynomial in which the three pa-
ability of the model to fit performed mean and individual rameters were fitted to measured |@henceforth, quadratic
ritardandi as well as runner's mean and individual decelera-Ol). In the other alternative, a similar quadratic function
tions will be examined. was used to approximate the tempo rather than note IOl
The q andv g parameters in the model, defined in Eg. (henceforth, quadratic tempoThe fitted-model parameter
(2), were varied by means of the solver function in Microsoftvalues and the resulting determination coefficient§ for
EXCEL 7.0, such that the sum of the squared distances bdhe 12 examples are listed in Table IV. The model fitted to
tween the model and the measured data was minimized. THbe 12 examples is plotted in the Appendixig. Al). A
normalization of measureitardandi and decelerations were comparison of the model and the two alternatives fitted to the
done relative to the first value. It means that a slight offset ofirst music exampléWIP) is shown in Fig. 10. Notice that
the first value affects all remaining values. Therefore, an adthe quadratic 10l has the undesired property of an initial
ditional third parameter ..o, Was varied in the optimizing tempo increase. A more realistic model for the quadratic 10l
process, which added a constant to the model. would be to restrict the tempo to be decreasing. This would
make for an even poorer fit.
As shown in Table IV, the meaqg value (@=2.8) is
very close to the initial value af=3 that was derived from
As an initial check of previous results, the model wasthe runners’ decelerations. Note that example WIP was also
fitted to the curves for the meaitardando and the mean used in the listening experiment above. It receivaphvalue
deceleration, see Fig. 9. The fit is good in both cases. In thef 2.5 that is just in the middle of the listeners’ preference, as
case of the deceleration curve, however, this was expectedeen in Fig. 7. Howeven varied substantially between ex-
as the model was originally derived from this curve. Figure 9amples. Indeed, two examples yieldgd 1.2, i.e., the tempo
also specifies the optimal values of the parametpend  decreased almost linearly with score position, and in three
veng- FOr both cases, thg values were close to 3. examplesq exceeded the value of four. Such low and high

B. Matching the model to measurements

1. Average curves
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TABLE IV. Model parametersq, vend, Uostsey Producing the best fit of individuaitardandi for 12 music
examples measured by Sundberg and Ver(ill®#80. The number of notes included in thigardandois listed

in the second column. The resulting determination coefficients are given in the column marked Model. The two

rightmost columns show the determination coefficierit®btained for the two alternatives tried, the quadratic
interonset interva(lOl), and the quadratic tempsee the tejt

Fitted-model parameters

Determination coefficiem® (

Music examples Notes q Uend U offset Model Quadratic IOl Quadratic tempo
W. clav | Prel. 1(WIP) 10 25 032 0.005 0.982 0.927 0.975
W. clav Il Prel. 1(WP21) 8 21 037 0.0001 0.980 0.989 0.983
W. clav Il Prel. 2(WP2 7 24 051 0.03 0.967 0.989 0.977
W. clav Il Fug. 3(WF3) 6 1.2 048 -0.03 0.969 0.951 0.968
W. clav Il Fug. 5(WF53 7 4.2 0.50 0.01 0.995 0.970 0.995
W. clav Il Fug. 5(WF5b) 8 26 037 -0.02 0.975 0.919 0.966
Eng. Suite 1 Allem(E1A) 6 20 045 -0.03 0.982 0.943 0.978
Eng. Suite 2 Allem(E2A) 11 3.7 037 0.02 0.975 0.927 0.980
Fr. Suite 4 Cour(F40) 6 4.2 0.50 0.02 0.991 0.959 0.986
Fr. Suite 6 Allem.(F6A) 7 24 045 0.02 0.981 0.965 0.979
Fr. Suite 6 Cour(F6C) 7 50 046 —0.008 0.994 0.902 0.959
Italian Conc. Mvt. 3(IC3) 7 1.2 034 -0.01 0.970 0.961 0.970
Mean 28 043 0.001 0.980 0.950 0.976
s.d. 1.2 0.07 0.02 0.01 0.03 0.01

values ofq received low ratings in the listening test above functions would offer a good fit. Longeitardandi, on the
(using other examplesyet were obviously acceptable in other hand, often exhibited a more pronounced tempo de-
these performances. This supports the assumption above tlaease at the end than in the beginning. The model also ac-
the optimalritardando curve depends on some characteris-counted for such cases provided a relatively high valug of
tics of the music example, e.g., musical structure or tempowas used, see Fig. Ithis example is not included in Table
The final tempw g varied comparatively less, between IV). The quadratic-tempo function, however, failed to pro-
32% and 51% of the initial tempo. Desain and Honingduce the characteristic increased curvature toward the end of
(1996 suggested that the final tempo might be dependent othe ritardando.
the global tempo. However, no indication of this was found
in the present data. There was no correlation between the

final tempo ¢end and the preitardando tempo (T) as de-

fined by Sundberg and Verrillar & —0.02).
Our model produced the highest mean correlation with

3. Individual ritardandi measured by Feldman,

Epstein, and Richards

Feldmanet al. (1992 measured twaitardandi in per-

the measurementsneanr?=0.99. A t-test comparing the formances of orchestral music. Thestardandi occurred
meanr? for the model and the meanr for the quadratic IOI
alternative yielded a significant differencp<0.003): this

suredritardandi better than the quadratic IOI.

Normalized tempo

within the pieces, i.e., not in a final position. Also, they were

clearly longer than the finaitardandi considered above, and

means that, on average, the model approximated the mewere measured at the beat level instead at the note level. The

three functions presented above were fitted to their example,
The correlation was slightly better for the model than forwhich had the smoother shape, see Fig.(4&@mple 1: A.

the quadratic tempo, but this difference was not significantDvorak, Slavonic dance, op 48:8, measures 243)2D2-

With regard to the shortesitardandi, consisting of no more spite the difference in style, length, and context, the result is

than six notes, it could be argued that many slightly curvedsimilar to that observed for thétardando shown in Fig. 11.

Model Quadratic tempo Quadratic 101
12 1.2 35
3 .
2 —
g Q2.5 1
3 3 4
& s °]
g £
<
5 2151
Veng = 0.32 Z 4
0.4 4 o
- * =0.982 14 = 0.927
0.2 —— 0.2 T 0.5 T

0.5
Normalized score position
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1

0.5
Normalized score position

FIG. 10. Model(left), quadratic tempdmiddle), and quadratic 10(right) functions fitted to theitardando data from music example WIP. The model
parameters used are presented in Table IV.
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FIG. 11. Model(left), quadratic tempdmiddle), and quadratic |O(right) functions fitted to a comparatively longardando measured in a performance of
music example WP 19. This example was not included in Table V. Note that the increased curvature in the erithodaheo could not be modeled with
a quadratic-tempo function.

Again, the model produced the best fit, slightly better thanThus, a high rating in the visual experiment corresponded to
that of the quadratic-tempo function, especially in the end ofr good fit of the model, but this correspondence was not
the ritardando. The fit obtained with the quadratic IOl was found if quadratic velocity was used.

the worst. It is noteworthy that Feldmaat al. would have

obtained much better fits if they had applied quadratic or

cubic functions to tempo as a function of tinfes they had V. GENERAL DISCUSSION

suggested in the first part of their papeather than to 101 of

" In discussing the model proposed here for descriptions
score position.

of final ritardandi and runners’ decelerations, certain limita-
tions should be kept in mind. The start of the firigdrdando
is difficult to identify in measurements, particularly in cases
Table V presents the model and a quadratic-velocityof a smooth onset. Perceptually a smooth onset ofithe
function fitted to each of the 16 decelerations in Table Il.dandois important, as mentioned. For example, informal lis-
The model fitted to the 16 examples is plotted in the Appentening tests revealed that the onset of fiterdando was far
dix (Fig. A2). According to the determination coefficients, too abrupt when a linear tempo function of score position
also shown in Table V, the model matched the data better fowvas applied. For the examples in Table IV, we identified the
the 12 highest-ranked decelerations. A two-taitetdst re-  ritardando onset by means of a rigorously applied rule; that
vealed that the means of the determination coefficieAts all tones after the onset must show a progressively decreas-
differed significantly <0.02) between the model and the ing tempo. This rule may yield delays of the point of onset in

4. Individual decelerations of runners

quadratic-velocity function. some cases, which leads to an underestimation of the value
For the four decelerations that were discarded for reaef g.
sons of low visual ratingTable V, rank 13—1f the deter- There are also other limitations. The perception of a fi-

mination coefficients for the model were significantly lower nal ritardando may depend not only on tempo changes, but
(two-tailed t-test, p<<0.005 than those of the group of 12, also on dynamic changes. This parameter was not analyzed
higher-rated decelerationgneanr?=0.975 and 0.990, re- in the present investigation. Another important factor is its
spectively. On the other hand, when fitting the quadratic total length. What is considered an approprigtardando
function to these four decelerations, no significant change ofmay also depend on the instrument played. In view of the
r? was observedmeanr?=0.979 and 0.978, respectivgly analogies suggested by our findings between music and lo-

Model Quadratic tempo Quadratic 10l
1.2 1.2 3.5
14 ° 14 31
g 3 A
£ £ ©25 1
2 0.8 208 2
3 o M
@ o N o2
N N [
B06{ q=26 T 0.6 E
£ £ £
<23 ] Vens=022 g (Z) 1.5 4
04{ r=0076 0.4 1 D
? = 0.971 #=0.857
L |
0.2 — T 0.2 — T 0.5
05 1 0 0.5 . 1 05 »
Normalized score position Normalized score position Normalized score position

FIG. 12. Model(left), quadratic tempdmiddle), and quadratic IO[right) functions fitted to aitardando measured by Feldmaet al. (1992.
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TABLE V. Model parametersd, vena, Uottsed Producing the best fit of 16 approaching final stop disappeared when the quadratic 10l

individual decelerations produced by the dancers. The decelerations arve was used for finaitardandi: it was no more obvious
listed in rank order according to the mean rating of aesthetic quality. The ’

resulting determination coefficients are given in the column marked Model.tha-t the last tone rea_tlly was the last. ) )
The two rightmost columns show the determination coefficiefisbtained A factor of possible relevance to our results is musical

for t_he model and for the quadratic velocity alternative. The first 12 de(_:el—sty|e' The measurements and fittings in which the quadratic
g;at\:gr;s(Rank 1-12 were used for calculating the average deceleratlonlo' was used mainly concerned romantic classical music,
i while the present finalitardando model was mostly tested
Deceleration ~ Fitted model parameters  Determination coefficiggt (  ON baroque musifexcept for samplve, 1 from Feldmaat al.
(1992, which was composed by Dvak]. It is also possible

Rank Model uadratic velocit . .
A Uend Uofin Q Y that the poor success of the quadratic 101 alternative re-
% g; 8%2 —g-gg 8-882 8-3;2 flected that these two music styles are associated with differ-
3 34 020 00l 0978 0.939 ent types of motion. , _
4 33  0.39 0.03 0.980 0.991 Surprisingly, we found two cases gf=1.2 in the fit-
2 i-g 8-52 8-825 g-ggg 8-883 tings of the individualritardandi, i.e., the tempo decreased
7 32 033 0003  0.985 0978 almost Ime_arly Wlth score posuﬂqn. Such qcurmz(l) was
8 21 020 0.03 0.990 0.998 rated low in the listening experimeriapplied on different
13 %; gé?l’ _060833 06999868 069556 examples. Also, when applied in informal tests to a variety
11 34 032 0.01 0.995 0.981 of music e>_<amp|es, this curve sounded musically unaccept-
12 27 021 -0.02 0.996 0.973 able. As with the quadratic 10l one problem was that the
Mean(1-12 2.8 027 0.004  0.990 0.978 piece did not appear to approach a final stop during the last
s.d. 05 0.08 0.02 0.006 0.016 part of theritardando.
2
13 25 008 0.07 0.965 0.966 Why_ does our model .work. The tvv_o casgsZ gnd
14 30 035 0.007  0.992 0.989 g=3, which received the highest ratings in the listening ex-
15 27 016 007  0.974 0.989 periment, have a very simple form in terms of locomotion;
16 20029 003 0968 0.972 the former implies that the braking force is constant while
Mean(?—l@ 20~64 00-2122 %%Z %%7152 %907192 the latter implies that the braking power is constant. Such
s¢ ' ' i ' : simple relations would facilitate prediction of the point of
final stop.

The deceleration power was found to be approximately

equivalents of, e.g., inertia and its effect on the firitdr- constanf throug.hout the entire deceleration process. Thus, the

danda dancers’ velocity patterns appeared to be well planned,
which should enable a spectator to predict the point of final

It appeared that it was more difficult for the listeners to ¢ The similarity bet th locit d th
differentiate the tempo curves in a musically unnatural ex>wop. The simifarily between the velocily: curves an €

ample. In selecting the music examples for the listening testtempto %urvgs .for thelltlar(jan(:o ;L]Jpptt)rts t.he h}ypothgss }Dhat
the authors frequently noted that the perceived character 5_er| ardandois an aflusion to the stopping of running. =re-
the different curves was well exposed by real music ex- !Ctab'“ty of t_he_ |r_15tant at which the final tone appears in a
amples but almost impossible to distinguish in unrealistic P'€¢® of Music is _|mportant npt only _to the players_ but prob-
simple examples, such as a sequence of tone repetitions. &t?ly also to the I|_steners. Itis possible that the time Of. ap-
the other hand, the tempo curve seems to originate from thgearance of the final to.”e. bepomes predlctaplg in music lis-
paramount experience of locomotion. Maybe the musical untening because of the similarity between the firialrdando

naturalness of such examples distracts the listener’s attenti(?rpd ?hfun.”er st_dect:_eleratlo? cu(;ve. ibility t |
from the tempo curve. In any event, realistic musical ex- IS Investigation explored one possibiiity o analyze

amples seem crucial for a correct evaluation of any musiéh{ﬁ relallttlonstpetwe':en music ?nd m°“°‘?' but E)hfre arehalsc(j)
performance model. other alternatives. For example, comparisons between hand-

The quadratic 10l curve gave the poorest results, both jjnovement patterns, such as during conducting, and local

the listening experiment and in the curve fittings. This wag€MPO pattems might offer further interesting insights into

surprising, since it had been successfully applied to describttg“:J similarities between motion and music.
tempo curves associated with phrasiff@dd, 1985; Repp,
1992b; Friberg, 1995b; Penel and Drake, 1998rans- V. CONCLUSION

formed to tempo as a function of score position, the qua- The mean instant velocity during runners’ decelerations,
dratic 10l curve assumes a shape characterized by a graduyaérceived as aesthetically pleasing, can be accurately de-
decrease of the curve steepness, as was illustrated in Fig. dcribed by a square-root function of time. This implies that

If translated to velocity in locomotion, such a curve shapethe runner is supplying a constant amount of deceleration
would imply that the runner refrains from spending energypower throughout the entire deceleration process. Such a de-
on reduction of speed toward the end of the deceleratiogeleration pattern is strikingly similar to a curve representing
process, thus suggesting a continuation of the movementhe mean instant tempo versus time in fimardandi of

This message appears quite appropriate at phrase endingsusical performances.

the music will continue beyond the phrase boundary. Indeed, A model of the finalritardando was derived from run-
according to informal listening tests the impression of anners’ mean-deceleration curve, assuming constant decelera-

comotion, it would be tempting to explore possible musical
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tion power. By introducing two main parametegsfor cur-  the listening experiment and in the attempts to match indi-
vature andvenq for the end value, this model could well vidual measureditardandi.
describe the average tempo curve in fintrdandi, the av-
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