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onventional programming systems have limited utility for composing and 
playing computer music because the languages themselves lack features 
relating to time and concurrency, and their runtime systems cannot 

provide the needed levels of output timing accuracy or input response speed. 
Formula (an abbreviation for Forth Music Language) is a programming system 

that addresses these problems. It runs on Atari ST and Macintosh personal 
computers that control music synthesizers, typically via a MIDI interface.’ For- 
mula therefore does not specify waveform synthesis algorithms; its abstractions 
begin at the level of “note” and extend upward. 

We based Formula on the Forth language (see the sidebar) and added many new 
functions and control structures. We designed Formula for the following applica- 
tions: 

Programmed score interpretation. You can use Formula to represent static 
musical scores, as with Darms2 or Score.3 In addition, you can use Formula to 
express interpretive elements (for example, tempo and volume fluctuation) often 

AIgorithmic composition. Formula’s constructs are executable. Therefore, the 
features of the underlying programming language (for example, control structures 

a language for 
controlling synthesizers, not present in scores. 

can model the 
expressiveness of a 

human performance, It 

and parameterized procedures) are available at any point. This lets you represent 
iteration, nesting, and randomness. 

Znteractive systems. A Formula program plays its output, normally with very . .  

accurate timing while it executes. Also, Formula programs respond rapidly to 
input, so they can define “intelligent instruments” that interact with a performer suppofis algorithmic 

composition, interactive 
performance, and 

using input devices such as MIDI instruments or a computer keyboard and mouse. 

Formula uses concurrent processes that share a single address space; its runtime 
system schedules the processes. Formula offers several process types: programmed 

interpretation of Note-playing processes compute sequences of pitches and play these pitches as 
notes or chords. A separate note-playing process typically represents each “voice” of 
a piece of music. You can collect note-playing processes into groups. traditional scores. 
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Auxiliurv procwses are attached to tostartingthe note (anal- 
notc-playing processesorgroups tosup- ogous to prcssing a pi- 
ply note parameters such as volume. ano key). the function 
duration. and articulation. There are stops thc note (lifts the 
several subtvpes of auxiliarv Drocesses: kev). ‘l’hc default dura- ._ < *  

shapes control volume and articulation, 
time deformations generate tempo fluc- 
tuations, and timing sequence genera- 
tors produce rhythmic sequences. 

Input-handling processes execute 
when input arrives from a particular 
device (keyboard, mouse, MIDI). In 
response to input, they generate output 
themselves or create note-playing pro- 
cesses to do so. 

Formula’s factorization into pro- 
cesses provides several advantages. You 
can easily express concurrent musical 
voices. You can also exploit the struc- 
ture in each musical parameter. For 
example, you can write a repeating 
rhythm as a loop, even if the corre- 
sponding pitches do not repeat. 

Factorization into processes also facil- 
itates the specification of musical “ex- 
pression.” For example, the timing of a 
piece is typically divided into the notated 
timing, specified by the timing sequence 
generator process, and the expressive 
fluctuations in tempo, specified by time 
deformation processes. These specifica- 
tions are in separate sections of code, 
and you can modify them independently. 
You can factor tempo fluctuation itself 
into several time deformations and su- 
perimpose the deformations to produce 
the actual note timing. 

In this article, we give an overview of 
the Formula language and describe two 
representative Formula programs. A 
complete description of the Formula 
language is available e l~ewhere .~  We 
have described the process scheduling 
techniques used in Formula’s runtime 
system in other articles.5.h 

Basic features of 
Formula 

In this section, we describe Formula’s 
basic facilities for playing notes, creat- 
ing parallel note-playing processes, and 
grouping these processes. 

Playing notes and chords. Figure 1 
shows Formula’s note-playing functions, 
or words, in Forth terminology. The 
basic note-playing word is $. For exam- 
ple, 60 $ plays middle C (60 is the MIDI 
pitch number for middle C). In addition 

,, 
tion is a quarter note, 
but you can express oth- 
er time intervals as frac- 
tions of whole notes or directly in mil& 
seconds. Also, $ pauses the calling pro- 
cess; the default is again a quarter note. 
Thus, 

Figure 1. Formula’s note-playing words. 

You can name pitches using a, b, ..., g. 
These words return apitch numberwith- 
in a current octave, initially the octave 
beginning at middle C. Prepending a 
plus or minus sign specifies a pitch in 
the next higher or lower octave. Ap- 
pending a plus or minus sign specifies a 
sharpor flat. For example, +g-specifies 
the G-flat in the octave above the cur- 
rent octave. n oct sets the current oc- 

60 $ 64 $ 67 $ 72 $ 

plays a C major arpeggio in quarter 
notes, with each note ending precisely 
when the next one begins. 
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I :apcadence I 

Figure 2. The definition of a note-playing word and the score fragment it plays. 

Figure 3. [n params] moves entries from the stack of the parent process to the 
stack of the child process. 

:ap trio 
(create a group) 

xeate processes within group) 

(continue here when group is empty) 

Figure 4. Creating a group. 

tave to n (middle C is octave 3). The 
word r returns a special pitch number 
(zero) that represents a rest. 

:ap and ;ap delimit the definition of a 
note-playing word. They are like the 
colon and semicolon, but also add to the 
search list a vocabularyap-defscontain- 
ing words relevant to note-playing pro- 
cesses. Figure 2 shows the definition of 
a note-playing word and the score frag- 
ment it plays. 

Note-playing processes. The follow- 
ing construct creates a note-playing pro- 
cess: 

:ap asynch-scale 
::ap 

c d  e f g5$  
;;ap 

;ap 

Formula executes the code within the 
::ap ... ;;ap construct as a separate pro- 
cess. The parent process continues after 
;;ap (it does not wait for the child to 
finish). The child process exits when it 
reaches ;;ap. Thus, if you run asynch- 
scale from the Forth interpreter, it will 

play in the background while the inter- 
preter handles further terminal keyboard 
input. 

This type of construct, called an em- 
bedded process definition, is used 
throughout Formula. It lets you embed 
the code for a process within the proce- 
dure that creates the process, rather 
than in a separate (and perhaps hard- 
to-find) place. 

When you create a process, often you 
must put initial parameters on its stack. 
In the example shown in Figure 3, 
/ 2 params ] tells Formula to move the 
top two entries from the stack of the 
parent process to the stack of the child. 

For many quantities, such as the “cur- 
rent octave” used in pitch-naming, you 
need a separate copy in each process. 
Formula provides a mechanism for de- 
fining per-process variables (called 
pquans). By default, a pquan name re- 
fers to its instance in the currently exe- 
cuting process. 

Note-playing process groups. A group 
is a collection of note-playing processes 
and can contain other groups as elements. 
You can control (suspend, resume, or 

kill) a group as a unit. If you attach 
auxiliary processes to a group, they af- 
fect the tempo or volume of all notes 
generated by processes in that group and 
its descendants. The ::gp ... ;;gp construct 
shown in Figure 4 creates a group. 

When a process P executes ::gp, it 
temporarily becomes a group. Formula 
creates a new process Q, which executes 
the code following ::gp and becomes the 
sole member of the new group. Q may 
create additional processes in the group 
using ::ap. Q exits when it reaches ;;gp. 
When all the processes in the group 
have exited, P becomes a process again 
and resumes execution after ;;gp. In the 
example in Figure 4, trio temporarily 
changes the calling process Pinto a group 
containing three processes that execute 
soprano, alto, and bass, respectively. P 
resumes and executes ending when these 
three processes have finished. 

Interactive process control. A typical 
Formula program creates many pro- 
cesses. Usually you need to interact with 
only a few of them, the visibleprocesses, 
and can ignore the rest. Each visible 
process has a unique ID (a small integer) 
and a symbolic name. The followingvari- 
ant of ::ap creates a visible process: 

:ap trio 
::ap” trio” 

(trio 
;;ap 

;ap 

The string following ::ap” (trio, in this 
case) is the symbolic name. Formula 
assigns the ID. The word .all prints a list 
of all existing visible “objects” (pro- 
cesses and groups), including their 
names, IDS, and states. Figure 5 lists the 
words that manipulate visible objects. 

Time control structures. As a note- 
playing process plays notes, it advances 
through a sequence of time positions 
(the start and end times of the notes). 
Formula provides control structures to 
specify limits on the time consumed by 
a block of code. The construct 

maxtime ( n  - - - ) 

maxend 
... 

specifies that the enclosed code is to 
consume at most n units of time in the 
process’s virtual time system. (We de- 
scribe virtual time systems in a later 
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section.) If the code exceeds the limit, 
the system unwinds the stack and trans- 
fers control to the statement following 
maxend. 

Figure 6 shows code that plays a se- 
quence of random-length notes. The 
sequence lasts exactly as long as eight 
whole notes. Other constructs specify a 
lower time bound on a code block, en- 
forced by repetition or waiting. Youcan 
nest these structures; outermost struc- 
tures have priority. 

Auxiliary processes 

The $ words take only pitch argu- 
ments. You specify other parameters 
(such as volume and duration) using 
per-process variables and auxiliarypro- 
cesses. You can also use auxiliary pro- 
cesses to change the tempo of note- 
playing processes. An auxiliary process 
can be attached to either a process or a 
group. If you attach it to a group, it 
affects all processes in the group and its 
descendants. 

Attaching auxiliary processes. A note- 
playing process P has local and global 
contexts. By default, P’s local context is 
itself, and its global context is the top- 
level group containing it (or, if P is top- 
level, P itself). 

Every note-playing process and group 
contains slots, each of which can con- 
tain an auxiliary process (the set of slots 
is extensible). Table 1 shows how em- 
bedded auxiliary process definitions 
create new processes in the slots of the 
calling process or its local or global con- 
texts. The semantics of these constructs 
are asfollows: When a note-playingpro- 
cess reaches the start of the construct 
(say, ::shl), the process currently in the 
shl slot of its local context is killed. 
Formula creates a new process, execut- 
ing the embedded code, and installs it in 
that slot. The constructs also add vocab- 
ularies (sg-defs, sh-defs, and td-defs) 
relevant to the type of process being 
defined. You can specify that parame- 
ters be passed to the new process using 
[ n params J. For example, in Figure 7, 
the volume shape causes the notes to be 
played with a linear volume increase of 
0 to 100 over a whole-note period. (We 
modified Forth’s parser t o  accept 
rational-number notation. For exam- 
ple,3116representsadurationof3/16- 
a dotted eighth note, if time units are 
equated with whole notes.) 

Figure 5. Words to manipulate visible objects. 

:ap foo 
::tsg 

;;sg 
811 maxtime (do the following for 8 whole notes) 

begin 114 irnd & again rates random numbers) 

begin c $ again 
maxend 

;ap 
I 
Figure 6. Playing a bounded-length sequence of random-length notes. 

begin c $ again 
maxend 

;ap 

(install new volume shape in local context) 
(volume shape process executes this code) 

Figure 7. Using a shape for a linear volume increase. 

Table 1. The syntax for defining auxillary processes. 

Defining Syntax Location 

::tsg ... ;;sg 
::shl ... ;;sh 
::sh2 ._. ;;sh 
::gshl ... ;;sh 
::gsh2 ... ;;sh 
::ash ... ;;sh 
::tdl ... ;;td 
::td2 ... ;;td 
::gtdl ... ;;td 
::gtd2 ... ;;td 

Self 
Local context 
Local context 
Global context 
Global context 
Local context 
Local context 
Local context 
Global context 
Global context 

Purpose 

Note duration 
Volume control 
Volume control 
Volume control 
Volume control 
Articulation 
Tempo control 
Tempo control 
Tempo control 
Tempo control 

Process Type 

Sequence generator 
Shape 
Shape 
Shape 
Shape 
Shape 
Time deformation 
Time deformation 
Time deformation 
Time deformation 

Procedural concatenation functions. Figure 9 shows the concatenation of m 
A procedural concatenation function 
(PCF) is a process that defines a func- 
tion of time by calling PCF primitives. 
Each primitive represents a function 
defined over a time interval. The func- 
tion defined by the PCF process is the 
concatenation of the primitive functions. 
Figure 8 gives an example. 

A PCF definition can have parame- 
ters, use control structures, and call 
other PCF definitions. For example, 

instances of swell. 

Shapes. Shapes are PCFs whose val- 
ues control volume or articulation. 
(Shapes might also be used to control 
timbre, spatial location, or other param- 
eters, but we have not yet implemented 
these uses.) Figure 10 lists the primitives 
for shape definitions that Formula pro- 
vides; others are easy to define. The prim- 
itive oseg represents a segment ranging 
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relative to the start of the next note, or 
the release time as a multiple of the time 
until the next note. Hence. 

relative 
.I 2.5 111 oseg 

Figure 8. An example of function definition by procedural concatenation. The 
word swell defines the function shown; seg (y l  y2 dt - - - ;) is a procedural con- 
catenation function primitive representing a linear change from y l  to y2 over an 
interval dt. 

Figure 9. Concatenation of instances of swell. 

Figure 10. Primitives for shape definitions. 

from yl  to y2 over an 
interval dt. A shape 
primitiveiseither open 
or closed. The shape 
value at the boundary 
between two primi- 
tives is determined by 
the first primitive if the 
first primitive isclosed 
otherwise, by the sec- 
ond. 

The volume of 
notes played using $ 
words is the sum of 
up to two local vol- 
ume shapes, up to two 
globalvolume shapes, 
and a per-process 
variable $volume.  
The sum must lie in 
the range [-128,1271; 
it is then converted to 

Figure 11. A time deformation pro- 
cess executes a procedural concatena- 
tion function (a). The resulting tempo 
function is integrated over its domain 
(a) to deform a sequence of time in- 
tervals (c). 

MIDI’S [0, 1271 scale. The actual loud- 
ness function depends on the synthe- 
sizer. 

Shapes alsocontrol articulation (stac- 
cato, legato, and so on). A note’s “delay 
until release” (denoted D,) can differ 
from its “delay until next note” (denot- 
ed D J .  D,  may be longer (causing note 
overlap or  legato) or  shorter than D,. 
We call this timing relationship articu- 
lation. In Formula, an articulation shape 
that determines D,, possibly as a func- 
tion of D,, controls the articulation for 
each note-playing process. 

The value returned by an articulation 
shape includes both a number X and an 
absolute, relative, or ratio mode. An ar- 
ticulation shape generates X using shape 
primitives such as oseg, and can call ab- 
solute, relative, or ratio to change its mode. 
Table 2 shows how the mode and value 
determine a note’s delay until release. 
Depending on the mode, the numerical 
value of an articulation shape gives the 
release time of a note, the release time 

generates a linear transition from stac- 
cato to legato over a whole note. This 
articulation shape can be applied to any 
sequence of note durations within that 
period. 

Time deformations. Tempo fluctua- 
tions are defined by time deformations 
(TDs). A TD defines a tempofunction by 
procedural concatenation. Formula ap- 
plies a TD to a time interval X by inte- 
grating the tempo function over X(start- 
ing from theTD’s current position), then 
advancing the position by the duration 
of X .  For example, if the tempo varies 
linearly from 1 to 2 over an interval of 
duration 1, the interval is mapped by the 
TD to a duration of 1.5. Figure 11 shows 
a more complex example. 

Figure 12 lists the available TD prim- 
itives (others are easy to define). The 
primitives lpause and rpause insert a 
“pause” in the tempo function; they 
map a single time point to a pause of 
duration t. With lpause, events (note 
starts or ends) scheduled for this time 
occur after the pause; with rpause, they 
occur before the pause. 

If you attach two TDs to the same 
object, their effects are multiplied. If 
TDs are attached to an object and its 
parent, they are combined in series: The 
output of the first is the input of the 
second. Hence, each object has its own 
“virtual time system,” which is mapped 
to real time by the clusters of time de- 
formations attached to it and its con- 
taining groups. 

Timing sequence generators. A tim- 
ing sequence generator (TSG) is a pro- 
cess that generates a sequence of note 
durations for a note-playing process. 
The $ words get note durations from 
TSGs. TSG word definitions are delim- 
ited by :sg and ;sg, and embedded TSG 
definitions are delimited by ::sg and ;;sg 
(both constructs add a vocabulary sg- 
defs to the search list). A TSG returns a 
sequence element using 

& (n - - - ; return a sequence 
element n) 

Table 3 lists commonly occurring 
rhythmic patterns and their naming con- 
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ventions. The words in the table are in 
the sg-defs vocabulary because they are 
called only from TSG definitions. Iden- 
tical names are used in the up-defs vo- 
cabulary for words to install a TSG that 
generates an infinite sequence of the 
given durations. This permits convenient 
notation in note-playing processes: 

~~ 

Mode Value Determination 

Absolute 
Relative 
Ratio D ,  = X D ,  

D ,  = X (does not depend on 0,) 
D ,  = max(0, D, + X) 

14 c d e 3$ 
18 f g a 3$ 

The first line plays quarter notes; the 
second, eighth notes. 

Two Formula programs 
In this section, we illustrate some of 

Formula’s features using two Formula 
programs. (Readers may order an ac- 
companying compact disk or cassette 
tape to hear the two selections we de- 
scribe in this section. See the order form 
on page 9.) 

A programmed interpretation. The 
first example is an interpretation of the 
Prelude in F-sharp minor for piano, Opus 
28, No. 8. by Frederic Chopin. Figure 13 
shows the first four measures of the 
score. The specification of the score is 
straightforward because the piece has a 
repetitive rhythmicstructure. Like most 
of Chopin’s work, this piece is generally 

I I 
seg (r l  r2 dt - - - ; linear tempo change from r l  to  r2 over time dt) 
con (r dt - - - ; constant tempo of r over time dt) 
lpause (t - - - ; “left-justified” pause of duration t) 
rpause (t - - - ; “right-justified” pause of duration t) 

L 
Figure 12. Time deformation primitives. 

Table 2. Determination of a note’s delay until release, D ,  

Table 3. Notation of commonly occurring rhythmic patterns. 

Name Definition Length of Note 

11 111 & Whole 
14. 318 & Dotted quarter 
14.. 7116 & Double dotted quarter 
218 I8 I8 Two eighths 
14.8 14. I8 Dotted quarter and eighth 
12-3 213 & 213 & 213 & Triplet half 
/a+ I8 116 116 Eighth and two 1 6 t h ~  

Figure 13. The beginning of the score for Prelude No. 8 by Chopin. 
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played with significant tempo and vol- 
ume fluctuation. 

Figure 14 shows the process structure 
of the program. A top-level group con- 
tains note-playingprocesses for the left- 
and right-hand parts, each of which has 
an articulation shape, a volume shape, 
and a timing sequence generator. Two 
time deformations are attached to the 
group, affecting both note-playing pro- 
cesses uniformly. (In some interpretive 
styles. the timing of the left- and right- 
hand parts is deformed independently. 
This is possible in Formula, but it re- 
quires writing time deformations that 
synchronize - have equal integrals - 
at the desired points.) 

r 

Figure 14. The process structure of the Formula program for Chopin’s Prelude 
No. 8. Lined boxes show note-playing processes; dashed boxes show auxiliary 
processes. 

1 :ap rhb 
2 
3 ;ap 
4 
5 :ap rh (right-hand process) 
6 ::shl (volume shape within each beat) 
7 begin 
8 
9 -40 1116 ocon 
10 
11 
12 again 
13 ;;sh 
14 ::ash (articulation control) 
15 absolute 
16 begin 
17 
18 l(32 118 ocon 
19 
20 again 
21 ;;sh 
22 3oct132 
23 (measure 1) 
24 2 0 d o  
25 
26 

28 (measure 3) 
29 
30 
31 
32 
33 (measure 5 )  

(6 pitches - - - ; do 1 beat of right hand) 
dup $12  + $ $ $ $ $ dup $ 1 2  + $ 

0 1132 ocon -20 1132 ocon 

-20 1132 ocon -40 1132 ocon 
-10 1132 ocon -20 1132 ocon 

6(32 1132 ocon 5(32 1132 ocon 

l(16 1132 ocon l(32 1132 ocon 

d f+  a b g+ c+ rhb f+ g+ a b g+ c+ rhb 
e+ g+ b +c+ a+ f+  rhb g+ b +c+ +d b+ a rhb 

27 loop 

+d+ +f+ +a +b +g+ +c+ rhb b+ +d+ +f+ +g+ +e+ +c+ 
+c+ +e +g +a +f+ b rhb a+ +c+ +e +f+ +d+ b rhb 
b +c +d+ +e+ +d a rhb g+ b +d +e +c+ a rhb 
e+ g+ b +c+ a+ f+ rhb c+ e+ g+ a g d rhb 

(160 lines omitted) 

194 ;ap 
195 

196 :sh lbar  (swell over 4 beats, peak on 4) 
197 0 70 314 cseg 
198 70 0 114 oseg 
199 ;sh 
200 
201 :sh halfbar 
202 0 40 114 oseg 
203 40 0 114 oseg 
204 ;sh 
205 
206 :sh global-volume 
207 (1) 2 0 do lbar lbar  halfbar halfbar lbar loop 
208 (9) 0 127 611 oseg 127 211 ocon 0 211 ocon 
209 (19) lbar 0 127 211 oseg 127 111 ocon 
210 (23) 127 0 411 oseg 
211 (27) 0 111 ocon lbar  
212 (29) -40 111 ocon -40 0 314 oseg 0 -40 114 oseg 
213 (31) -40 100 111 oseg 100 -40 111 oseg 
214 (33) 30 211 ocon ;sh 
215 
216 :td tri 

217 
218 r> r> 112 seg 
219 l(64 lpause (with a little pause at the end) 
220 ;td 
221 
222 :td tril2 

rhb 223 >r dup >r 114 seg 
224 r> r> 114 seg 
225 l(64 lpause 
226 ;td 
227 
228 :td med 310 270 380 tri ;td 

229 :td medl2 310 270 380 tri/2 ;td 
230 :td slow 320 280 480 tri ;td 
231 :td quick 310 250 310 tri ;td 

(swell over 2 beats, peak on 2) 

(long-term volume control) 

(n m k - - - ; triangular TD over 
4 beats w/ peak on 3) 

>r dup >r 112 seg 

(n m k - - - ; triangle over 2 beats) 

(some common 
rubato patterns) 

I 

Figure 15. Programmed interpretation of Chopin’s Prelude No. 8. 
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e*,- 
____ _ _ _ _ _ - ~ ~ _ _ ~ -  

Figure 16. A graphic representation of measure3 3 and 4 of the Formula program output for Chopin’s Prelude No. 8. 
Each disk represents a note. Horizontal position is time, and the size of the disk represents the note’s volume. The gray 
bar following each disk represents the time for which the note sounds. Vertical lines are ruled at each 32nd note. 

232 
233 :td phrasing-tempo 
234 (1) med med med2 med2 slow l(64 lpause 
235 (5) med med medl2 medl2 med 
236 (9) quick quick med2 med/2 med 1164 lpause 
237 (13) 300 260 211 seg l(32 lpause 
238 (15) quick quick 3(32 lpause 
239 (17) med 320 300 600 tri l(64 lpause 
240 (19) med med 
241 (21) med/2 med2 300 400 111 seg l(64 lpause 
242 (23) 400 300 380 tri 380 320 340 tri 
243 (25) 340 280 111 seg l(64 lpause med 
244 (27) med slow med 320 280 500 tri l(32 lpause 
245 (31) 300 260 111 seg l(64 lpause slow 
246 (33) l(16 lpause 350 500 514 seg 
247 ;td 
248 
249 :ap (prelude 
250 ::gp 
251 96 beats-per-minute 
252 ::gshl global-volume ;;sh 
253 ::gtdl phrasing-tempo ;;td 
254 ::gtd2 (rubato at 1 beat level) 
255 
256 ;;td 
257 
258 $right piano rh 
259 $center 
260 ending 
261 ;;gp 
262 ;ap 
263 
264 :ap prelude 
265 ::ap” prelude” 
266 (prelude 
267 ;;ap 
268 ;ap 

(long term tempo contr 

(main program, synchronous version) 

begin 270 200 114 seg again 

::ap $left piano lh ;;ap 

(main program, asynchronous ve 

July 1991 

In  the Formula program shown in 
Figure 15, lines 1 through 3 define a 
word rhh to play one beat of the right 
hand. Because each beat contains two 
notes repeated at the octave, we need 
only six pitches to specify the eight notes. 
Lines 6 through 13 define the “micro- 
volume” shape for the right-hand part, 
while lines 14 through 21 define the 
articulation shape. The timing sequence 
generator is specified by 132 in line 22. 
Lines 24 through 90 specify the pitches 
for the right hand. Lines 196 through 
214 define a global volume shape ap- 
plied to both the left and right hands. 
We separately defined two commonly 
occurring patterns, swells of half- and 
whole-measure duration, with Zhar and 
halfbar and used them repeatedly in 
global-volume. 

Lines 216 through 247 define a global 
time deformation for long-term (phrase- 
level) control. This time deformation 
uses a set of words (tri, med, quick, and 
so on) for commonly occurring phras- 
ing. Each phrase ends with a short pause. 
A second time deformation is defined 
in-line (line 255) for beat-level control: 
Within each beat, the tempo starts out 
slow and speeds up. Finally, lines 249 
through 268 define the main program. 

Figure 16 graphically represents part 
of the output of this Formula program 
and shows the effects of the auxiliary 
processes described above. The volume 
shapes accent the strong positions with- 
in each beat and provide a swell toward 
the high point of each phrase. The time 
deformations (manifested by the irreg- 
ularity of the vertical lines) linger on 
the strong beats, rush toward the top of 
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each phrase, and pause between phrases. 
The articulation shape in the right hand 
sustains the melody notes but not the 
passing tones. 

An algorithmic composition. Figure 
17 shows the sourcecode for “Tuf-Stuf,” 
an algorithmic composition programmed 
by Ron Kuivila. The composition dem- 
onstrates the power of Formula’s multi- 
ple-process model: A short program gen- 
erates a lengthy and complex piece. 
“Tuf-Stuf” consists of eight note-play- 
ing processes executing the same algo- 
rithm (tiif) but with different parame- 
ters (lines 46-53). The algorithm steps 
through a cyclical pitch group with a 
given increment (lines 34-38). For each 
process, the size of the pitch group var- 
ies over time. Each process is subjected 
to a triangle wave volume shape (lines 
13-18). The processes start and end at 
different times, and use different in- 
strument sounds and spatial locations. 

he Formula language can 
produce expressive computer- 
generated music. It is related to 

music languages such as Moxie,l PLA,8 
Formes,’and Darms,2 but it  has a unique 
combination of attributes: 

Programmability. Almost all Formula 
features are executable statements. Thus, 
the power of the underlying program- 
ming language (for example, its control 
structures and parameterized procedures) 
is available throughout Formula. 

Real-time interaction. Formula is 
based on a real-time process scheduler.h 
Unless a program’s computation time 
exceeds its performance time over long 
periods, the system executes output ac- 
tions with highly accurate timing (typi- 
cally within 5 milliseconds). Input-han- 
dling processes can very rapidly create 
new note-playing processes, and their 
output begins within a few milliseconds. 

Lightweight processes. Formula’s 
unit of structure is the process, a thread 
of execution with its own stack of call 
frames and local variables. Processes 
can advance in time within arbitrary 
nested function calls. This is a natural 
and powerful way to maintain computa- 
tion state over time. In contrast, lan- 
guages such as Moxie’ require the com- 
putation for a given logical instant to 
run to completion. 

Separation of score and interpreta- 
tion. Formula makes it simple to sepa- 
rate a score (embodied in note-playing 
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and timing-sequence-generator pro- 
cesses) from its interpretation (repre- 
sented by shapes and time deformations). 

Formula has many other music- 
related features beyond those we dis- 
cussed in this article. For example, its 
synthesizer manager provides a uniform 
interface for synthesizer output and al- 
lows concurrent processes to share syn- 
thesizers coherently.’” Formula provides 
a facility for defining and using nonstan- 
dard tuning systems and includes several 
predefined tuning systems, such as 
“stretched” equal temperament, just- 
intoned scales, and a Javanese Gamelan 
scale. 

Forth’s simplicity and its highly ex- 
tensible nature made it well suited for 

developing Formula. On the other hand, 
Forth syntax often leads to hard-to-un- 
derstand code, and it lacks some struc- 
turing features (for example, type dec- 
larations) useful for large-scale software 
development. For these reasons, we are 
currently reimplementing Formula us- 
ing C++ as the base language.” H 
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1 pquan cycle-size (per-process variables) 
2 pquan base-pitch 
3 pquaninc 
4 
5 :ap tuf 
6 (to and t l  are the start and end times in measures) 
7 (base-pitch is the starting pitch) 
8 (cycle-size determines the size of cycles) 
9 (inc is the increment in cycles) 

(to t l  base-pitch cycle-size inc priority dur shape-dur - - - ;) 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

(priority is the note priority for synth manager) 
(dur is the reciprocal of note duration) 
(shape-dur is the volume shape period in measures) 

::shl [ 1 params ] (sawtooth-wave volume shape) 
>r 
begin 

again 
p ff r cseg ff p r cseg 

;;sh 
::tsg [ 1 params ] 

1 over r>i & 

(note duration is l/n) 
begin 

again 
;;sg 
::ash (articulation is detached) 

ratio 
begin 0.5 111 ocon again 

;;sh 
to  inc 
to cycle-size 
to base-pitch 
maxtime 

Figure 17. “Tuf-Stuf,” an algorithmic composition by Ron Kuivila. 
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time-advance 
base-pitch 
127 1 do 

i cycle-size 21 * 0 do 
inc + j mod base-pitch + 127 and dup $ 

loop 
loop 
drop 

maxend 
;ap 

:ap (tuf-stuf 
::gp 

280 beats-per-minute 
::ap 50 to $location nasty-bass 0 18011 30 2 146 2 4211 tuf ;;ap 
::ap 20 to  $location piano 1011 18011 50 4 73 4 8411 tuf ;;ap 
::ap 80 to $location piano 2511 5011 66 2 146 3 6411 tuf ;;ap 
::ap 80 to $location piano 5011 18011 66 2 146 3 6411 tuf ;;ap 
::ap 100 to $location vibes 5011 18011 70 4 73 6 12811 tuf ;;ap 
::ap 0 to $location xylophone 5011 10011 76 2 146 6 12811 tuf ;;ap 
::ap 0 to $location xylophone 10011 18011 76 2 146 3 12811 tuf ;;ap 
127 to $location electric-piano 10011 18011 69 3 18 9 25611 tuf 

;;gp 
;ap 

:ap tuf-stuf 
::ap” tuf-stuf” 

(tuf-stuf 
;;ap 

;ap 
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