
Formula:
A Programming
Language
for Expressive
Computer Music
David P. Anderson, University of California at Berkeley
Ron Kuivila, Wesleyan University

onventional programming systems have limited utility for composing and
playing computer music because the languages themselves lack features
relating to time and concurrency, and their runtime systems cannot

provide the needed levels of output timing accuracy or input response speed.
Formula (an abbreviation for Forth Music Language) is a programming system

that addresses these problems. It runs on Atari ST and Macintosh personal
computers that control music synthesizers, typically via a MIDI interface.’ For-
mula therefore does not specify waveform synthesis algorithms; its abstractions
begin at the level of “note” and extend upward.

We based Formula on the Forth language (see the sidebar) and added many new
functions and control structures. We designed Formula for the following applica-
tions:

Programmed score interpretation. You can use Formula to represent static
musical scores, as with Darms2 or Score.3 In addition, you can use Formula to
express interpretive elements (for example, tempo and volume fluctuation) often

AIgorithmic composition. Formula’s constructs are executable. Therefore, the
features of the underlying programming language (for example, control structures

a language for
controlling synthesizers, not present in scores.

can model the
expressiveness of a

human performance, It

and parameterized procedures) are available at any point. This lets you represent
iteration, nesting, and randomness.

Znteractive systems. A Formula program plays its output, normally with very . .

accurate timing while it executes. Also, Formula programs respond rapidly to
input, so they can define “intelligent instruments” that interact with a performer suppofis algorithmic

composition, interactive
performance, and

using input devices such as MIDI instruments or a computer keyboard and mouse.

Formula uses concurrent processes that share a single address space; its runtime
system schedules the processes. Formula offers several process types: programmed

interpretation of Note-playing processes compute sequences of pitches and play these pitches as
notes or chords. A separate note-playing process typically represents each “voice” of
a piece of music. You can collect note-playing processes into groups. traditional scores.

12 COMPUTER 0018.9 162/91/0700-0012$01 .OO 0 1991 lEEE

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

Auxiliurv procwses are attached to tostartingthe note (anal-
notc-playing processesorgroups tosup- ogous to prcssing a pi-
ply note parameters such as volume. ano key). the function
duration. and articulation. There are stops thc note (lifts the
several subtvpes of auxiliarv Drocesses: kev). ‘l’hc default dura- ._ < *

shapes control volume and articulation,
time deformations generate tempo fluc-
tuations, and timing sequence genera-
tors produce rhythmic sequences.

Input-handling processes execute
when input arrives from a particular
device (keyboard, mouse, MIDI). In
response to input, they generate output
themselves or create note-playing pro-
cesses to do so.

Formula’s factorization into pro-
cesses provides several advantages. You
can easily express concurrent musical
voices. You can also exploit the struc-
ture in each musical parameter. For
example, you can write a repeating
rhythm as a loop, even if the corre-
sponding pitches do not repeat.

Factorization into processes also facil-
itates the specification of musical “ex-
pression.” For example, the timing of a
piece is typically divided into the notated
timing, specified by the timing sequence
generator process, and the expressive
fluctuations in tempo, specified by time
deformation processes. These specifica-
tions are in separate sections of code,
and you can modify them independently.
You can factor tempo fluctuation itself
into several time deformations and su-
perimpose the deformations to produce
the actual note timing.

In this article, we give an overview of
the Formula language and describe two
representative Formula programs. A
complete description of the Formula
language is available e l~ewhere .~ We
have described the process scheduling
techniques used in Formula’s runtime
system in other articles.5.h

Basic features of
Formula

In this section, we describe Formula’s
basic facilities for playing notes, creat-
ing parallel note-playing processes, and
grouping these processes.

Playing notes and chords. Figure 1
shows Formula’s note-playing functions,
or words, in Forth terminology. The
basic note-playing word is $. For exam-
ple, 60 $ plays middle C (60 is the MIDI
pitch number for middle C). In addition

,,
tion is a quarter note,
but you can express oth-
er time intervals as frac-
tions of whole notes or directly in mil&
seconds. Also, $ pauses the calling pro-
cess; the default is again a quarter note.
Thus,

Figure 1. Formula’s note-playing words.

You can name pitches using a, b, ..., g.
These words return apitch numberwith-
in a current octave, initially the octave
beginning at middle C. Prepending a
plus or minus sign specifies a pitch in
the next higher or lower octave. Ap-
pending a plus or minus sign specifies a
sharpor flat. For example, +g-specifies
the G-flat in the octave above the cur-
rent octave. n oct sets the current oc-

60 $ 64 $ 67 $ 72 $

plays a C major arpeggio in quarter
notes, with each note ending precisely
when the next one begins.

July 1991 13

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

I :apcadence I

Figure 2. The definition of a note-playing word and the score fragment it plays.

Figure 3. [n params] moves entries from the stack of the parent process to the
stack of the child process.

:ap trio
(create a group)

xeate processes within group)

(continue here when group is empty)

Figure 4. Creating a group.

tave to n (middle C is octave 3). The
word r returns a special pitch number
(zero) that represents a rest.

:ap and ;ap delimit the definition of a
note-playing word. They are like the
colon and semicolon, but also add to the
search list a vocabularyap-defscontain-
ing words relevant to note-playing pro-
cesses. Figure 2 shows the definition of
a note-playing word and the score frag-
ment it plays.

Note-playing processes. The follow-
ing construct creates a note-playing pro-
cess:

:ap asynch-scale
::ap

c d e f g5$
;;ap

;ap

Formula executes the code within the
::ap ... ;;ap construct as a separate pro-
cess. The parent process continues after
;;ap (it does not wait for the child to
finish). The child process exits when it
reaches ;;ap. Thus, if you run asynch-
scale from the Forth interpreter, it will

play in the background while the inter-
preter handles further terminal keyboard
input.

This type of construct, called an em-
bedded process definition, is used
throughout Formula. It lets you embed
the code for a process within the proce-
dure that creates the process, rather
than in a separate (and perhaps hard-
to-find) place.

When you create a process, often you
must put initial parameters on its stack.
In the example shown in Figure 3,
/ 2 params] tells Formula to move the
top two entries from the stack of the
parent process to the stack of the child.

For many quantities, such as the “cur-
rent octave” used in pitch-naming, you
need a separate copy in each process.
Formula provides a mechanism for de-
fining per-process variables (called
pquans). By default, a pquan name re-
fers to its instance in the currently exe-
cuting process.

Note-playing process groups. A group
is a collection of note-playing processes
and can contain other groups as elements.
You can control (suspend, resume, or

kill) a group as a unit. If you attach
auxiliary processes to a group, they af-
fect the tempo or volume of all notes
generated by processes in that group and
its descendants. The ::gp ... ;;gp construct
shown in Figure 4 creates a group.

When a process P executes ::gp, it
temporarily becomes a group. Formula
creates a new process Q, which executes
the code following ::gp and becomes the
sole member of the new group. Q may
create additional processes in the group
using ::ap. Q exits when it reaches ;;gp.
When all the processes in the group
have exited, P becomes a process again
and resumes execution after ;;gp. In the
example in Figure 4, trio temporarily
changes the calling process Pinto a group
containing three processes that execute
soprano, alto, and bass, respectively. P
resumes and executes ending when these
three processes have finished.

Interactive process control. A typical
Formula program creates many pro-
cesses. Usually you need to interact with
only a few of them, the visibleprocesses,
and can ignore the rest. Each visible
process has a unique ID (a small integer)
and a symbolic name. The followingvari-
ant of ::ap creates a visible process:

:ap trio
::ap” trio”

(trio
;;ap

;ap

The string following ::ap” (trio, in this
case) is the symbolic name. Formula
assigns the ID. The word .all prints a list
of all existing visible “objects” (pro-
cesses and groups), including their
names, IDS, and states. Figure 5 lists the
words that manipulate visible objects.

Time control structures. As a note-
playing process plays notes, it advances
through a sequence of time positions
(the start and end times of the notes).
Formula provides control structures to
specify limits on the time consumed by
a block of code. The construct

maxtime (n - - -)

maxend
...

specifies that the enclosed code is to
consume at most n units of time in the
process’s virtual time system. (We de-
scribe virtual time systems in a later

14 COMPUTER

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

section.) If the code exceeds the limit,
the system unwinds the stack and trans-
fers control to the statement following
maxend.

Figure 6 shows code that plays a se-
quence of random-length notes. The
sequence lasts exactly as long as eight
whole notes. Other constructs specify a
lower time bound on a code block, en-
forced by repetition or waiting. Youcan
nest these structures; outermost struc-
tures have priority.

Auxiliary processes

The $ words take only pitch argu-
ments. You specify other parameters
(such as volume and duration) using
per-process variables and auxiliarypro-
cesses. You can also use auxiliary pro-
cesses to change the tempo of note-
playing processes. An auxiliary process
can be attached to either a process or a
group. If you attach it to a group, it
affects all processes in the group and its
descendants.

Attaching auxiliary processes. A note-
playing process P has local and global
contexts. By default, P’s local context is
itself, and its global context is the top-
level group containing it (or, if P is top-
level, P itself).

Every note-playing process and group
contains slots, each of which can con-
tain an auxiliary process (the set of slots
is extensible). Table 1 shows how em-
bedded auxiliary process definitions
create new processes in the slots of the
calling process or its local or global con-
texts. The semantics of these constructs
are asfollows: When a note-playingpro-
cess reaches the start of the construct
(say, ::shl), the process currently in the
shl slot of its local context is killed.
Formula creates a new process, execut-
ing the embedded code, and installs it in
that slot. The constructs also add vocab-
ularies (sg-defs, sh-defs, and td-defs)
relevant to the type of process being
defined. You can specify that parame-
ters be passed to the new process using
[n params J. For example, in Figure 7,
the volume shape causes the notes to be
played with a linear volume increase of
0 to 100 over a whole-note period. (We
modified Forth’s parser t o accept
rational-number notation. For exam-
ple,3116representsadurationof3/16-
a dotted eighth note, if time units are
equated with whole notes.)

Figure 5. Words to manipulate visible objects.

:ap foo
::tsg

;;sg
811 maxtime (do the following for 8 whole notes)

begin 114 irnd & again rates random numbers)

begin c $ again
maxend

;ap
I
Figure 6. Playing a bounded-length sequence of random-length notes.

begin c $ again
maxend

;ap

(install new volume shape in local context)
(volume shape process executes this code)

Figure 7. Using a shape for a linear volume increase.

Table 1. The syntax for defining auxillary processes.

Defining Syntax Location

::tsg ... ;;sg
::shl ... ;;sh
::sh2 ._. ;;sh
::gshl ... ;;sh
::gsh2 ... ;;sh
::ash ... ;;sh
::tdl ... ;;td
::td2 ... ;;td
::gtdl ... ;;td
::gtd2 ... ;;td

Self
Local context
Local context
Global context
Global context
Local context
Local context
Local context
Global context
Global context

Purpose

Note duration
Volume control
Volume control
Volume control
Volume control
Articulation
Tempo control
Tempo control
Tempo control
Tempo control

Process Type

Sequence generator
Shape
Shape
Shape
Shape
Shape
Time deformation
Time deformation
Time deformation
Time deformation

Procedural concatenation functions. Figure 9 shows the concatenation of m
A procedural concatenation function
(PCF) is a process that defines a func-
tion of time by calling PCF primitives.
Each primitive represents a function
defined over a time interval. The func-
tion defined by the PCF process is the
concatenation of the primitive functions.
Figure 8 gives an example.

A PCF definition can have parame-
ters, use control structures, and call
other PCF definitions. For example,

instances of swell.

Shapes. Shapes are PCFs whose val-
ues control volume or articulation.
(Shapes might also be used to control
timbre, spatial location, or other param-
eters, but we have not yet implemented
these uses.) Figure 10 lists the primitives
for shape definitions that Formula pro-
vides; others are easy to define. The prim-
itive oseg represents a segment ranging

July 1991 15

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

relative to the start of the next note, or
the release time as a multiple of the time
until the next note. Hence.

relative
.I 2.5 111 oseg

Figure 8. An example of function definition by procedural concatenation. The
word swell defines the function shown; seg (y l y2 dt - - - ;) is a procedural con-
catenation function primitive representing a linear change from y l to y2 over an
interval dt.

Figure 9. Concatenation of instances of swell.

Figure 10. Primitives for shape definitions.

from yl to y2 over an
interval dt. A shape
primitiveiseither open
or closed. The shape
value at the boundary
between two primi-
tives is determined by
the first primitive if the
first primitive isclosed
otherwise, by the sec-
ond.

The volume of
notes played using $
words is the sum of
up to two local vol-
ume shapes, up to two
globalvolume shapes,
and a per-process
variable $volume.
The sum must lie in
the range [-128,1271;
it is then converted to

Figure 11. A time deformation pro-
cess executes a procedural concatena-
tion function (a). The resulting tempo
function is integrated over its domain
(a) to deform a sequence of time in-
tervals (c).

MIDI’S [0, 1271 scale. The actual loud-
ness function depends on the synthe-
sizer.

Shapes alsocontrol articulation (stac-
cato, legato, and so on). A note’s “delay
until release” (denoted D,) can differ
from its “delay until next note” (denot-
ed D J . D, may be longer (causing note
overlap or legato) or shorter than D,.
We call this timing relationship articu-
lation. In Formula, an articulation shape
that determines D,, possibly as a func-
tion of D,, controls the articulation for
each note-playing process.

The value returned by an articulation
shape includes both a number X and an
absolute, relative, or ratio mode. An ar-
ticulation shape generates X using shape
primitives such as oseg, and can call ab-
solute, relative, or ratio to change its mode.
Table 2 shows how the mode and value
determine a note’s delay until release.
Depending on the mode, the numerical
value of an articulation shape gives the
release time of a note, the release time

generates a linear transition from stac-
cato to legato over a whole note. This
articulation shape can be applied to any
sequence of note durations within that
period.

Time deformations. Tempo fluctua-
tions are defined by time deformations
(TDs). A TD defines a tempofunction by
procedural concatenation. Formula ap-
plies a TD to a time interval X by inte-
grating the tempo function over X(start-
ing from theTD’s current position), then
advancing the position by the duration
of X . For example, if the tempo varies
linearly from 1 to 2 over an interval of
duration 1, the interval is mapped by the
TD to a duration of 1.5. Figure 11 shows
a more complex example.

Figure 12 lists the available TD prim-
itives (others are easy to define). The
primitives lpause and rpause insert a
“pause” in the tempo function; they
map a single time point to a pause of
duration t. With lpause, events (note
starts or ends) scheduled for this time
occur after the pause; with rpause, they
occur before the pause.

If you attach two TDs to the same
object, their effects are multiplied. If
TDs are attached to an object and its
parent, they are combined in series: The
output of the first is the input of the
second. Hence, each object has its own
“virtual time system,” which is mapped
to real time by the clusters of time de-
formations attached to it and its con-
taining groups.

Timing sequence generators. A tim-
ing sequence generator (TSG) is a pro-
cess that generates a sequence of note
durations for a note-playing process.
The $ words get note durations from
TSGs. TSG word definitions are delim-
ited by :sg and ;sg, and embedded TSG
definitions are delimited by ::sg and ;;sg
(both constructs add a vocabulary sg-
defs to the search list). A TSG returns a
sequence element using

& (n - - - ; return a sequence
element n)

Table 3 lists commonly occurring
rhythmic patterns and their naming con-

16 COMPUTER

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

ventions. The words in the table are in
the sg-defs vocabulary because they are
called only from TSG definitions. Iden-
tical names are used in the up-defs vo-
cabulary for words to install a TSG that
generates an infinite sequence of the
given durations. This permits convenient
notation in note-playing processes:

~~

Mode Value Determination

Absolute
Relative
Ratio D , = X D ,

D , = X (does not depend on 0,)
D , = max(0, D, + X)

14 c d e 3$
18 f g a 3$

The first line plays quarter notes; the
second, eighth notes.

Two Formula programs
In this section, we illustrate some of

Formula’s features using two Formula
programs. (Readers may order an ac-
companying compact disk or cassette
tape to hear the two selections we de-
scribe in this section. See the order form
on page 9.)

A programmed interpretation. The
first example is an interpretation of the
Prelude in F-sharp minor for piano, Opus
28, No. 8. by Frederic Chopin. Figure 13
shows the first four measures of the
score. The specification of the score is
straightforward because the piece has a
repetitive rhythmicstructure. Like most
of Chopin’s work, this piece is generally

I I
seg (r l r2 dt - - - ; linear tempo change from r l to r2 over time dt)
con (r dt - - - ; constant tempo of r over time dt)
lpause (t - - - ; “left-justified” pause of duration t)
rpause (t - - - ; “right-justified” pause of duration t)

L
Figure 12. Time deformation primitives.

Table 2. Determination of a note’s delay until release, D ,

Table 3. Notation of commonly occurring rhythmic patterns.

Name Definition Length of Note

11 111 & Whole
14. 318 & Dotted quarter
14.. 7116 & Double dotted quarter
218 I8 I8 Two eighths
14.8 14. I8 Dotted quarter and eighth
12-3 213 & 213 & 213 & Triplet half
/a+ I8 116 116 Eighth and two 1 6 t h ~

Figure 13. The beginning of the score for Prelude No. 8 by Chopin.

July 1991 17

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

played with significant tempo and vol-
ume fluctuation.

Figure 14 shows the process structure
of the program. A top-level group con-
tains note-playingprocesses for the left-
and right-hand parts, each of which has
an articulation shape, a volume shape,
and a timing sequence generator. Two
time deformations are attached to the
group, affecting both note-playing pro-
cesses uniformly. (In some interpretive
styles. the timing of the left- and right-
hand parts is deformed independently.
This is possible in Formula, but it re-
quires writing time deformations that
synchronize - have equal integrals -
at the desired points.)

r

Figure 14. The process structure of the Formula program for Chopin’s Prelude
No. 8. Lined boxes show note-playing processes; dashed boxes show auxiliary
processes.

1 :ap rhb
2
3 ;ap
4
5 :ap rh (right-hand process)
6 ::shl (volume shape within each beat)
7 begin
8
9 -40 1116 ocon
10
11
12 again
13 ;;sh
14 ::ash (articulation control)
15 absolute
16 begin
17
18 l(32 118 ocon
19
20 again
21 ;;sh
22 3oct132
23 (measure 1)
24 2 0 d o
25
26

28 (measure 3)
29
30
31
32
33 (measure 5)

(6 pitches - - - ; do 1 beat of right hand)
dup $12 + $ $ $ $ $ dup $ 1 2 + $

0 1132 ocon -20 1132 ocon

-20 1132 ocon -40 1132 ocon
-10 1132 ocon -20 1132 ocon

6(32 1132 ocon 5(32 1132 ocon

l(16 1132 ocon l(32 1132 ocon

d f+ a b g+ c+ rhb f+ g+ a b g+ c+ rhb
e+ g+ b +c+ a+ f+ rhb g+ b +c+ +d b+ a rhb

27 loop

+d+ +f+ +a +b +g+ +c+ rhb b+ +d+ +f+ +g+ +e+ +c+
+c+ +e +g +a +f+ b rhb a+ +c+ +e +f+ +d+ b rhb
b +c +d+ +e+ +d a rhb g+ b +d +e +c+ a rhb
e+ g+ b +c+ a+ f+ rhb c+ e+ g+ a g d rhb

(160 lines omitted)

194 ;ap
195

196 :sh lbar (swell over 4 beats, peak on 4)
197 0 70 314 cseg
198 70 0 114 oseg
199 ;sh
200
201 :sh halfbar
202 0 40 114 oseg
203 40 0 114 oseg
204 ;sh
205
206 :sh global-volume
207 (1) 2 0 do lbar lbar halfbar halfbar lbar loop
208 (9) 0 127 611 oseg 127 211 ocon 0 211 ocon
209 (19) lbar 0 127 211 oseg 127 111 ocon
210 (23) 127 0 411 oseg
211 (27) 0 111 ocon lbar
212 (29) -40 111 ocon -40 0 314 oseg 0 -40 114 oseg
213 (31) -40 100 111 oseg 100 -40 111 oseg
214 (33) 30 211 ocon ;sh
215
216 :td tri

217
218 r> r> 112 seg
219 l(64 lpause (with a little pause at the end)
220 ;td
221
222 :td tril2

rhb 223 >r dup >r 114 seg
224 r> r> 114 seg
225 l(64 lpause
226 ;td
227
228 :td med 310 270 380 tri ;td

229 :td medl2 310 270 380 tri/2 ;td
230 :td slow 320 280 480 tri ;td
231 :td quick 310 250 310 tri ;td

(swell over 2 beats, peak on 2)

(long-term volume control)

(n m k - - - ; triangular TD over
4 beats w/ peak on 3)

>r dup >r 112 seg

(n m k - - - ; triangle over 2 beats)

(some common
rubato patterns)

I

Figure 15. Programmed interpretation of Chopin’s Prelude No. 8.

18 COMPUTER

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

e*,-
____ _ _ _ _ _ - ~ ~ _ _ ~ -

Figure 16. A graphic representation of measure3 3 and 4 of the Formula program output for Chopin’s Prelude No. 8.
Each disk represents a note. Horizontal position is time, and the size of the disk represents the note’s volume. The gray
bar following each disk represents the time for which the note sounds. Vertical lines are ruled at each 32nd note.

232
233 :td phrasing-tempo
234 (1) med med med2 med2 slow l(64 lpause
235 (5) med med medl2 medl2 med
236 (9) quick quick med2 med/2 med 1164 lpause
237 (13) 300 260 211 seg l(32 lpause
238 (15) quick quick 3(32 lpause
239 (17) med 320 300 600 tri l(64 lpause
240 (19) med med
241 (21) med/2 med2 300 400 111 seg l(64 lpause
242 (23) 400 300 380 tri 380 320 340 tri
243 (25) 340 280 111 seg l(64 lpause med
244 (27) med slow med 320 280 500 tri l(32 lpause
245 (31) 300 260 111 seg l(64 lpause slow
246 (33) l(16 lpause 350 500 514 seg
247 ;td
248
249 :ap (prelude
250 ::gp
251 96 beats-per-minute
252 ::gshl global-volume ;;sh
253 ::gtdl phrasing-tempo ;;td
254 ::gtd2 (rubato at 1 beat level)
255
256 ;;td
257
258 $right piano rh
259 $center
260 ending
261 ;;gp
262 ;ap
263
264 :ap prelude
265 ::ap” prelude”
266 (prelude
267 ;;ap
268 ;ap

(long term tempo contr

(main program, synchronous version)

begin 270 200 114 seg again

::ap $left piano lh ;;ap

(main program, asynchronous ve

July 1991

In the Formula program shown in
Figure 15, lines 1 through 3 define a
word rhh to play one beat of the right
hand. Because each beat contains two
notes repeated at the octave, we need
only six pitches to specify the eight notes.
Lines 6 through 13 define the “micro-
volume” shape for the right-hand part,
while lines 14 through 21 define the
articulation shape. The timing sequence
generator is specified by 132 in line 22.
Lines 24 through 90 specify the pitches
for the right hand. Lines 196 through
214 define a global volume shape ap-
plied to both the left and right hands.
We separately defined two commonly
occurring patterns, swells of half- and
whole-measure duration, with Zhar and
halfbar and used them repeatedly in
global-volume.

Lines 216 through 247 define a global
time deformation for long-term (phrase-
level) control. This time deformation
uses a set of words (tri, med, quick, and
so on) for commonly occurring phras-
ing. Each phrase ends with a short pause.
A second time deformation is defined
in-line (line 255) for beat-level control:
Within each beat, the tempo starts out
slow and speeds up. Finally, lines 249
through 268 define the main program.

Figure 16 graphically represents part
of the output of this Formula program
and shows the effects of the auxiliary
processes described above. The volume
shapes accent the strong positions with-
in each beat and provide a swell toward
the high point of each phrase. The time
deformations (manifested by the irreg-
ularity of the vertical lines) linger on
the strong beats, rush toward the top of

19

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

each phrase, and pause between phrases.
The articulation shape in the right hand
sustains the melody notes but not the
passing tones.

An algorithmic composition. Figure
17 shows the sourcecode for “Tuf-Stuf,”
an algorithmic composition programmed
by Ron Kuivila. The composition dem-
onstrates the power of Formula’s multi-
ple-process model: A short program gen-
erates a lengthy and complex piece.
“Tuf-Stuf” consists of eight note-play-
ing processes executing the same algo-
rithm (tiif) but with different parame-
ters (lines 46-53). The algorithm steps
through a cyclical pitch group with a
given increment (lines 34-38). For each
process, the size of the pitch group var-
ies over time. Each process is subjected
to a triangle wave volume shape (lines
13-18). The processes start and end at
different times, and use different in-
strument sounds and spatial locations.

he Formula language can
produce expressive computer-
generated music. It is related to

music languages such as Moxie,l PLA,8
Formes,’and Darms,2 but it has a unique
combination of attributes:

Programmability. Almost all Formula
features are executable statements. Thus,
the power of the underlying program-
ming language (for example, its control
structures and parameterized procedures)
is available throughout Formula.

Real-time interaction. Formula is
based on a real-time process scheduler.h
Unless a program’s computation time
exceeds its performance time over long
periods, the system executes output ac-
tions with highly accurate timing (typi-
cally within 5 milliseconds). Input-han-
dling processes can very rapidly create
new note-playing processes, and their
output begins within a few milliseconds.

Lightweight processes. Formula’s
unit of structure is the process, a thread
of execution with its own stack of call
frames and local variables. Processes
can advance in time within arbitrary
nested function calls. This is a natural
and powerful way to maintain computa-
tion state over time. In contrast, lan-
guages such as Moxie’ require the com-
putation for a given logical instant to
run to completion.

Separation of score and interpreta-
tion. Formula makes it simple to sepa-
rate a score (embodied in note-playing

20

and timing-sequence-generator pro-
cesses) from its interpretation (repre-
sented by shapes and time deformations).

Formula has many other music-
related features beyond those we dis-
cussed in this article. For example, its
synthesizer manager provides a uniform
interface for synthesizer output and al-
lows concurrent processes to share syn-
thesizers coherently.’” Formula provides
a facility for defining and using nonstan-
dard tuning systems and includes several
predefined tuning systems, such as
“stretched” equal temperament, just-
intoned scales, and a Javanese Gamelan
scale.

Forth’s simplicity and its highly ex-
tensible nature made it well suited for

developing Formula. On the other hand,
Forth syntax often leads to hard-to-un-
derstand code, and it lacks some struc-
turing features (for example, type dec-
larations) useful for large-scale software
development. For these reasons, we are
currently reimplementing Formula us-
ing C++ as the base language.” H

Acknowledgments
We arc deeply indebted to Mitch Bradley

for developing Forthmacs, the Forth system
on which we based Formula. We also thank
the people who have contributed to For-
mula, including Bruce Holmer, Henricus
Holtman, George Homsy, Jim Horton, Marc
Sabatella, Rob Vaterlaus, and Erling Wold.

1 pquan cycle-size (per-process variables)
2 pquan base-pitch
3 pquaninc
4
5 :ap tuf
6 (to and t l are the start and end times in measures)
7 (base-pitch is the starting pitch)
8 (cycle-size determines the size of cycles)
9 (inc is the increment in cycles)

(to t l base-pitch cycle-size inc priority dur shape-dur - - - ;)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

(priority is the note priority for synth manager)
(dur is the reciprocal of note duration)
(shape-dur is the volume shape period in measures)

::shl [1 params] (sawtooth-wave volume shape)
>r
begin

again
p ff r cseg ff p r cseg

;;sh
::tsg [1 params]

1 over r>i &

(note duration is l/n)
begin

again
;;sg
::ash (articulation is detached)

ratio
begin 0.5 111 ocon again

;;sh
to inc
to cycle-size
to base-pitch
maxtime

Figure 17. “Tuf-Stuf,” an algorithmic composition by Ron Kuivila.

COMPUTER

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

References

1 . Musical Itistriinimt Digitnl Interface Spc+
rficntiorz 1.0. Int’l MIDI Assoc.. North
Hollywood. Calif.. 1983.

2. R.F. Erickson. “The Darms Project: A
Status Report.” Computers and the Hrr-
matiitiesVol.Y.No.6.June 1975.pp.291-
298.

3. L.C. Smith. “Score. A Musician’s Approach
to Computer Music,“ J . Audio Eng. Soc.,
Vol. 20. No. 1. Jan./Feb. 1972. pp. 7-14.

4. D.P. Anderson and R.J. Kuivila. “For-
mula Version 3.4 Reference Manual,”
Tech. Report 911630. Computer Science
Division. Univ. of California at Berke-
ley. May 1991.

5 . D.P. Anderson and R.J. Kuivila. “Con-
tinuous Abstractions for Discrete Event
Languages,” Computer MirsicJ., Vol. 13.
No. 3. Fall 1989. pp. 11-23.

6. D.P. Anderson and R.J. Kuivila, “A Sys-
tem for Computer Music Performance,”
A C‘M Truns. Computer Systems. Vol. 8.
No. 1 , Feb. 1990. pp. 56-82.

7. D. Collinge, “Moxie: A Language for
Computer Music Performance,” Proc.
Inr’l Compiirer Music Conf . Computer
Music Assoc.. San Francisco, 1984. pp.
21 7-220.

Computer Music J . Vol. 8, No. 3. Fall
1984, 32-50.

10. D.P. Anderson. “Synthesizer Manage-
ment Based on Note Priorities.” Proc. Int‘l
Computer Music Conf .. Computer Music
Assoc., San Francisco. 1987, pp. 230-237.

1 1, D.P. Anderson and J . Bilmes, “Concur-
rent Real-Time Music in C++,” Proc.
Usenix C++ Workshop, Berkeley. Calif..
1991, pp. 147-161.

8. B. Schottstaedt, “PLA: A Composer’s
Idea ofa Language,” Computer MrcsicJ..
Vol. 7. No. 1. Winter 1983, pp. 11-20.

9 X Rodet and P Cointe. “Formes Com-
position and Scheduling of Processes.”

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

time-advance
base-pitch
127 1 do

i cycle-size 21 * 0 do
inc + j mod base-pitch + 127 and dup $

loop
loop
drop

maxend
;ap

:ap (tuf-stuf
::gp

280 beats-per-minute
::ap 50 to $location nasty-bass 0 18011 30 2 146 2 4211 tuf ;;ap
::ap 20 to $location piano 1011 18011 50 4 73 4 8411 tuf ;;ap
::ap 80 to $location piano 2511 5011 66 2 146 3 6411 tuf ;;ap
::ap 80 to $location piano 5011 18011 66 2 146 3 6411 tuf ;;ap
::ap 100 to $location vibes 5011 18011 70 4 73 6 12811 tuf ;;ap
::ap 0 to $location xylophone 5011 10011 76 2 146 6 12811 tuf ;;ap
::ap 0 to $location xylophone 10011 18011 76 2 146 3 12811 tuf ;;ap
127 to $location electric-piano 10011 18011 69 3 18 9 25611 tuf

;;gp
;ap

:ap tuf-stuf
::ap” tuf-stuf”

(tuf-stuf
;;ap

;ap

David P. Anderson is an assistant professor
in the Computer Science Division at the
IJniversity of California at Berkeley. In ad-
dition to his work in computer music, he has
done research in distributed operating sys-
tems, software support for digital audio and
video. distributed programming, computer
graphics. and protocol specification.

Anderson received his BA in mathematics
from Wesleyan University, and his MA in
mathematics and MS and PhD in computer
science. all from the University of Wiscon-
sin-Madison.

Ron Kuivila teaches in the Music Depart-
ment at Wesleyan University. He composes
music and designs sound installations to high-
light the unusual electronic instruments he
designs. He pioneered the musical uses of
ultrasound. sound sampling in live perfor-
mance. speech synthesis, and high-voltage
phenomena. He has performed and exhibit-
ed throughout the IJS and Europe.

Kuivila received a BA in music from Wes-
leyan llniversity and an MFA from Mills
College.

Readerscan write to Anderson at the Com-
puter Science Division, Electrical Engineer-
ing and Computer Science Dept., University
of California, Berkeley, C A 94720: or
Kuivila at the Music Department, Wesleyan
University, Middletown, CT 06457.

July 1991 21

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 30,2025 at 21:02:41 UTC from IEEE Xplore. Restrictions apply.

