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 Make Me a Match:
 An Evaluation of

 Different Approaches
 to Score-Performance

 Matching

 Background

 Composers of classical music traditionally create
 musical scores, which musicians translate into
 performances. A score specifies which notes
 should be played in what order, and gives informa-
 tion about tempo, loudness, articulation, and
 structure. The score also contains symbols indicat-
 ing ornaments like trills, grace notes, and
 glissandi. Whereas information about pitch, note
 onset, and note duration is unambiguous, informa-
 tion about tempo, loudness, phrasing, articulation,
 and ornaments is generally not.

 Before we explore the relationship between
 scores and performances, we must clarify some
 terminology. We have to distinguish between a
 score in musical notation (paper score) and a com-
 putational representation of that score (score rep-
 resentation). Similarly, the act of musical
 performance (live performance) is distinguished
 from a computationally represented performance
 (performance representation). In this paper, perfor-
 mances are restricted to MIDI recordings of piano
 music. In these kinds of performances, the pitch,
 onset, and duration of every note are clearly de-
 fined. We do not consider other aspects of notes,
 such as timbre or loudness.

 The procedure that relates events in a perfor-
 mance to the corresponding events in a score is
 called matching. A person reading a paper score
 along with a live performance is matching, but

 usually the term is reserved for computer programs
 that are called matchers. Figure 1 summarizes the
 relation between the concepts mentioned above.

 Matchers are used in different contexts for dif-

 ferent tasks. One category of algorithms focuses
 on real-time matching, often called score follow-
 ing (Dannenberg 1984; Puckette and Lippe 1992).
 Another family of algorithms is concerned with
 non-real-time analyses (Large 1993; Heijink 1996;
 Hoshishiba, Horiguchi, and Fujinaga 1996), where
 the quality of the match is more important than
 efficiency, and the matcher does not have to make
 decisions in real time.

 Accurate matching algorithms are crucial for
 real-time composition and automatic accompani-
 ment systems. In the context of music perfor-
 mance research, matching algorithms are
 necessary to be able to measure aspects of a perfor-
 mance like timing: it must be known which per-
 formance note relates to which score note in order

 to, for example, extract expressive timing patterns
 and calculate local tempi.

 Matching is a complex task for three reasons:
 performers make errors, performers make use of
 expressive timings, and scores are frequently
 underspecified. We now discuss each of these as-
 pects in turn.

 Performance Errors

 Errors are often introduced in the process of trans-
 forming the paper score into a live performance.
 Such errors arise from different sources: notes can
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 Figure 1. The relation-
 ships between paper
 scores, live performances,
 computer representations
 of scores, and computer
 representations of perfor-
 mances.

 Paper score computer representation - Score

 ' Listener Matcher
 A A

 I MIDI recording Performance Live performance Performance

 be erroneously planned, or properly planned and
 erroneously executed (Palmer and van der Sande
 1993). Moreover, if the performer is recorded via a
 MIDI keyboard, even lightly brushing a key can
 cause the computer to detect a note, even though
 the performer did not produce any sound.
 A representation of scores and performances must
 first be specified to give examples of the different
 types of errors a matcher encounters. Virtually ev-
 ery matcher uses an approach based on pitch and
 onset information; this generally yields good results
 (Hoshishiba, Horiguchi, and Fujinaga 1996; Heijink,
 Windsor, and Desain in preparation). We will there-
 fore use only this information, and see how far it
 gets us. A score note will be represented as a pair (P,
 i), where P is the pitch in uppercase letters, and i is
 the symbolic onset time, a rational number. The on-
 set time is symbolic because a paper score never
 specifies onset times; it only specifies relative dura-
 tions. A performance note is represented as a pair (p,
 t), where p is the pitch in lowercase letters, and t is
 the onset time in seconds.

 This notation is used in Figure 2, which shows
 three different performances of the same score.
 The performances are on the left, and scores are on
 the right. Essentially, there are three kinds of er-
 rors. Some notes are specified in the score that are
 omitted (deletion errors) as in Figure 2a, and some
 notes are played that are not in the score (insertion
 errors) as in Figure 2b.

 Some combinations of insertion and deletion er-

 rors can be interpreted as substitution errors, as in
 Figure 2c, and one of the matchers we discuss in
 the next section (Large 1993) is able to make this
 interpretation. This matcher was used in the con-

 text of research into performance errors made by
 pianists of different levels of expertise (Palmer and
 van der Sande 1993).

 If we knew beforehand that there were no errors

 in the performance, the matching problem would
 be simplified. However, even expert performers
 make mistakes. When notes are omitted (deletion
 error) or added (insertion error), there are often
 many alternate interpretations of the relationship
 between the performance and the score, especially
 when the score contains several repeated notes on
 the same pitch and the performer omits one of
 them. Extreme use of expressive timing and unex-
 pected interpretations of ornaments may also
 cause a matcher to misinterpret correct perfor-
 mance events as errors.

 Expressive Timing

 The matchers we discuss in this article use two or-

 der constraints. First, notes that should sound si-
 multaneously according to the score can occur in
 any order in the performance. If, for instance, a
 score specifies a C-major chord, the performer could
 play C, E, and G, in that order, but the performer
 could also play E, C, G, or G, E, C, due to motor
 noise, expressive intentions, or recording artifacts.
 Second, notes in different chords should occur in
 the order specified in the score. It follows that notes
 within the same melody cannot be reversed.

 Most matchers use a very simple concept of note
 order with regard to scores. A score is represented
 as a list of notes ordered by onset time and is con-
 sequently regarded as a sequence of chords: two
 notes are in the same chord if they have the same
 onset; they are in different chords if they have dif-
 ferent onsets. However, most paper scores have a
 different structure, for instance, when there are
 multiple parallel voices. Some performance notes
 can occur in a different order than specified in a
 score representation, e.g., when voices are played
 out of phase from each other as a result of using
 extreme expressive timing.

 As an example, consider the score and perfor-
 mance in Figure 3. The score on the right specifies
 that notes (D5 2) and (A4 2) should be played at
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 Figure 2. Examples of per-
 formance errors: deletion
 error (a); insertion error
 (b); and substitution error
 (c), a combination of an

 insertion and a deletion

 error. The symbols used
 here are explained in the
 text.

 Figure 3. An example of
 voice asynchrony. To dis-
 tinguish the top voice
 from the bottom voice,
 the top voice is in bold-
 face. Dashed lines indi-

 cate matches that should
 be made but that violate

 the order of the score.

 (a 0.05) (A 0) (a 0.05) (A 0) (a 0.05) (A 0)

 (b 0.8) (B 1) (c 1.38) o-(B 1) (a 0.8) oA (B 1)
 (c# 1.34) (C 2) (C 2) (c 1.38) (C 2)

 (c 1.38)

 (a) (b) (c)

 the same time, and both before note (A4 3). Note
 that two notes that should be played simulta-
 neously according to the score can reverse order in
 the performance.
 In this case, the performer apparently let the
 two voices go out of phase, so that note (d5 3.6) is
 actually played after note (a4 3.5). A matcher is
 now unable to match (d5 3.6) to (D5 2) without
 violating the order of the score. We will return to
 this problem in the section entitled The Structure
 Matcher.

 Underspecification of Scores

 There may be events in the score that are not com-
 pletely written out, e.g., certain kinds of ornaments
 that are often open to multiple interpretations. A
 trill, for instance, can start on the indicated note or
 on the note a major or minor second above that.
 Moreover, the trill may or may not have a turn on
 the end. Therefore, it is unclear how many notes
 and which pitches will be in the trill.

 Existing Research

 A very straightforward matcher is the strict
 matcher, part of the POCO environment (Honing
 1990). The name "strict" is owing to the fact that
 the order of the notes, as notated in the score, is
 taken as a strict temporal constraint on the perfor-
 mance. Notes that have different score times are

 assumed to be performed in that order in the per-

 (c5 0.0) (C5 0)

 (a4 0.05) (A4 0)
 (a4 1.1) (B4 1)
 (b4 1.9)-> (A4 1)

 (a4 2.3) _ (D5 2)
 (a4 3.5) \ (A4 2)

 (d5 3.6)- (C5 3)

 Figure 3 (c5 4.8) (A4 3)

 formance, while notes that have identical score
 times are allowed to occur in any temporal order.
 The strict matcher makes use of a window of fixed

 size that slides through the score, and successive
 notes from the performance are given a chance to
 match the score notes in this window. The size of

 the window, a parameter of the algorithm, is mea-
 sured in number of score clusters. A cluster is ei-

 ther a single note or several notes expected to
 occur simultaneously. For example, the strict
 matcher reduces the paper score in Figure 4a to a
 list of notes, ordered by onset time and grouped in
 clusters, as in Figure 4b.

 The strict matcher can match two performance
 notes to two score notes that are in the same score

 cluster if the onsets of the performance notes dif-
 fer less than the maximum inter-onset interval
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 Figure 4. A paper score (a)
 and the corresponding
 score representation (b).

 (C4 1)
 (A3 1)

 S(B3 2)
 (G3 3)

 (C4 4)

 (A3 5)
 (F3 5)

 (a) (b)

 (maximum-ioi). It can match two performance
 notes to two score notes that are in different score

 clusters if the onsets of the performance notes dif-
 fer more than the minimum inter-onset interval

 (minimum-ioi).
 The window is advanced through the score

 when the first cluster in the window contains no
 more notes that can be matched. This occurs
 when all the notes in that cluster have been

 matched, or when a note in a later cluster has been
 matched, so the score order would be violated if
 another note in the first cluster were matched.

 The values of the window-size, maximum-ioi,
 and minimum-ioi parameters are important to the
 performance of the matcher, because they deter-
 mine the decision about the type of an error. If the
 window is too small, the matching score note for a
 performance note might fall outside the window,
 causing the performance note to be mistakenly in-
 terpreted as an insertion error. On the other hand,
 if the window is too large, insertion errors might
 be interpreted as matches instead. Likewise, the
 minimum-ioi and maximum-ioi parameters can
 cause misinterpretations of score notes or perfor-
 mance notes.

 The strict matcher considers only one possible
 interpretation of the relationship between score
 and performance at any point in time, and if an er-
 roneous decision is made, it cannot be corrected
 later. The strict matcher performs well and effi-
 ciently with expert performances, i.e., perfor-
 mances in which errors occur only occasionally.
 However, even in these cases, the matcher fails

 when there is an error in the context of many re-
 peated notes and when parallel voices go out of
 phase, and the order represented in the score is no
 longer respected.
 Another approach to matching was pioneered by

 Dannenberg (1984), whose matcher considers
 many possible alternative matches at any point in
 time. As an example of this type of matcher, we
 will discuss a matcher proposed by Large (1993), to
 which we will refer as the Large matcher. The
 Large matcher calculates the globally optimal
 match between a score and a performance based
 on a given "goodness" function. It treats the score
 in the same way as the strict matcher, namely, as
 a sequence of clusters. In contrast to the strict
 matcher, however, it does not process the perfor-
 mance note by note, but divides the performance
 into clusters before trying to match it with the
 score. For this, the matcher uses a maximum-ioi
 parameter analogously to the strict matcher. The
 Large matcher interprets some combinations of in-
 sertion and deletion errors as substitution errors;
 it was used in the context of performance-error re-
 search, where a classification of errors was impor-
 tant (Palmer and van der Sande 1993).

 Suppose the score has n clusters, and the perfor-
 mance has m clusters. To find the globally optimal
 match, the Large matcher constructs a table of n
 rows and m columns, where every cell in the table
 represents a particular combination of a score clus-
 ter and a performance cluster and the whole table
 represents all possible match alternatives (Large
 1993). The idea behind this procedure is that an
 optimal match will contain optimal partial
 matches. The rating at position (i, j) in the table
 reflects the total goodness of the optimal partial
 match between the score from cluster i + 1 and the

 performance from cluster j + 1, augmented with
 the goodness of the combination of score cluster i
 and performance cluster j. The goodness measure
 is determined empirically, and depends upon the
 character of the performances that are being
 matched (Large 1998). After the table has been
 constructed, the globally optimal match can be
 read from it. The Large matcher is intrinsically
 non-real time, since the method uses complete
 knowledge of the performance and the score to
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 find the globally optimal match. Contrary to the
 strict matcher, the Large matcher is guaranteed to
 find this globally optimal match.

 When the performance contains few errors, much
 unnecessary information is calculated. The
 matcher could be made more efficient by calculat-
 ing only a band around the diagonal from top-left to
 bottom-right in the table, instead of computing the
 entire table. If there were no errors in the perfor-
 mance, the whole match would fall along the diago-
 nal. This approach was used by Dannenberg (1984),
 where a score window of fixed size was used to

 limit the size of the diagonal band in the table.
 When using a window of fixed size, however, it is
 possible to overlook the globally optimal match,
 because some information is never considered.

 Hoshishiba, Horiguchi, and Fujinaga (1996) pro-
 posed a matcher that assigns a cost to a transition
 from one combination of score and performance
 clusters to another combination. If that transition is

 made by matching the clusters, the cost is low; if
 the combination is interpreted as an error, the cost
 is high. In this way, their matcher constructs a table
 in which all the cells are connected to their neigh-
 boring cells. The best match is then represented as
 the shortest or cheapest path along the transitions
 in the table. Like the Large matcher, this matcher
 calculates too much information if there are few er-

 rors in the performance. A similar approach was ad-
 vocated in Heijink (1996), and an improvement of
 this approach that solves the efficiency problem was
 proposed by Desain, Honing, and Heijink (1997).

 Summary of Existing Research

 We have touched on several matchers briefly and
 discussed two matchers in detail. The strict

 matcher and the Large matcher deal in different
 ways with the three main problems of matching de-
 scribed in the introduction. Both matchers focus on

 the problem of performance errors, but the Large
 matcher tends to be more robust in this respect.

 With regard to other issues, several authors
 (Desain and Honing 1992; Puckette and Lippe
 1992) have acknowledged the problem of expres-
 sive timing and its consequences for the behavior

 of a matcher. So far, however, no solutions have
 been proposed.

 Indeterminate ornaments are treated only in a
 matcher proposed by Dannenberg and Mukaino
 (1988). This matcher is able to handle certain
 types of trills and glissandi in a simple yet elegant
 way. However, we would advocate a more general
 and extendable mechanism to be able to deal with
 all kinds of ornaments.

 Some authors report good results by matching
 algorithms (Large 1993; Dannenberg 1984;
 Dannenberg and Mukaino 1988; Grubb and
 Dannenberg 1997), but these algorithms solve a
 different problem or are only applicable in certain
 situations. However, even in evaluations by the
 authors themselves, some practical matching pro-
 grams are largely unsuccessful; some researchers
 even abandon the idea of a successful matcher al-

 together (Puckette and Lippe 1992).
 Experienced human listeners have little or no

 problem in matching a live performance to a paper
 score in real time. This is still convincing evi-
 dence that robust score-performance matching is
 feasible, and it inspired us to make yet another at-
 tempt based on ideas about mental representation
 of temporal structure that were developed in the
 context of studies on expressive timing in music
 (Desain and Honing 1992).

 A Comparison of Different Matching Approaches

 Authors of existing matchers describe the way in
 which their matchers solve a problem, rather than
 what the solution is. In other words, they describe
 the implementation of the matchers, rather than
 the specification (the logical constraints that must
 hold between score, performance, and matcher)
 that led to the implementation. Because existing
 matchers have been implemented in different
 ways, it is difficult to compare them. For this rea-
 son, we have designed a general control structure
 for matchers, and have specified the strict matcher
 and the Large matcher in terms of this control
 structure. We will show that these two matchers

 are in fact different instances of the same ap-
 proach. Finally, we will introduce a new matcher
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 that uses structural annotations in the score, and
 show how it can be specified in the same way as
 the existing matchers.

 A General Control Structure for Matchers

 In matching, it is often difficult to decide which
 note in the score can be matched to a particular
 performance note. For instance, if the score speci-
 fies two consecutive notes with the same pitch,
 and the performer plays only one of them, that
 performance note could be matched to either one
 of the score notes, depending on the situation. An
 approach that attempts to make a correct decision
 quickly, like the strict matcher, needs much con-
 textual information. A decision for a present situa-
 tion may even depend on decisions to be taken
 later in the process.

 The approach we took regarding this problem is
 similar to the one described by Large (1993). We al-
 low a matcher to interpret a situation in all pos-
 sible ways, and postpone the decision about the
 correct interpretation until all of the alternative
 interpretations are fully considered.

 To clarify this, we must introduce the concept of
 states. A state contains all the information the

 matcher needs to make an interpretation of the cur-
 rent situation. At any time during the matching pro-
 cess-that is, in any state-the matcher considers a
 combination of a particular score note and a particu-
 lar performance note. Depending on the matcher, it
 could also consider several notes at the same time.

 In general, a state contains at least a score cluster
 and a performance cluster. Both clusters could con-
 sist of one or more notes, depending on the situation
 and the matcher. From a state, the matcher can
 make transitions to other states. After a transition,
 the matcher looks at a different place in the perfor-
 mance, at a different place in the score, or both.

 All the information the matcher needs is, by
 definition, contained in a state to prevent the
 matcher from having to look back at earlier states
 or transitions. This means that if a matcher needs

 more information than just the current score and
 performance cluster-for instance, the strict
 matcher needs to know the last match made to be

 able to use the minimum-ioi and maximum-ioi pa-
 rameters-that information needs to be in the

 state. We will return to this point after giving an
 example of the matching process.

 Consider a hypothetical matcher that starts at
 the beginning of the score and the performance
 and can make three different state transitions at

 any point. First, it can interpret a state as an inser-
 tion error, in which case it skips a note in the per-
 formance. Second, it can interpret a state as a
 deletion error, in which case it skips a note in the
 score. Third, it can interpret a state as a match, in
 which case it proceeds by one note in both the
 score and the performance and stores the match. It
 can only interpret a state as a match if the pitch of
 the performance note is equal to the pitch of the
 score note. The hypothetical matcher tries to
 match the performance {(a3 1.2), (b3 2.7)) to the
 score {(A3 1), (B3 2), (B3 3)}.

 The matcher interprets every state in three ways
 and can therefore make two or three transitions,
 depending on whether a match is possible, so the
 tree shown in Figure 5 is formed. A state is repre-
 sented as a node in this tree, and is denoted as a
 performance note followed by a score note in an-
 gular brackets. A transition is represented by an
 edge. The root node is defined as the node without
 any incoming edges, a terminal node is a node
 without outgoing edges, and an end node is a node
 representing a state where both the end of the
 score and the end of the performance have been
 reached. This means that every end node is a ter-
 minal node, but not vice versa.

 Every path through the tree from the root node
 to a terminal node represents a valid match alter-
 native, from which the matcher must choose the
 best one. The best match alternative is the one
 that contains the most match transitions. The

 matcher in question determines how this alterna-
 tive is selected.

 Notice that some states are represented more
 than once in the tree. This means that some alter-
 natives are considered more than once. In the case

 of large scores and performances, this approach is
 not adequate; the resulting combinatorial explo-
 sion must be harnessed before we can speak of a
 feasible solution. For this, we use dynamic pro-

 48 Computer Music Journal

This content downloaded from 
�������������128.32.10.230 on Thu, 28 Aug 2025 23:52:14 UTC������������� 

All use subject to https://about.jstor.org/terms



 Figure 5. The tree resulting
 from a match between the
 performance [(a3 1.2), (b3
 2.7)] and the score {(A3 1),
 (B3 2), (B3 3)]. The charac-
 ters next to the edges de-
 note the transitions: m, d,

 and i which stand for
 match, deletion error, and
 insertion error, respec-
 tively. A dash instead of a
 note in the cluster indi-

 cates the end of the score
 or performance is reached.

 <(a3 1.2), (A3 1)>

 d m

 <(a3 1.2), (B3 2)> <(b3 2.7), (B3 2)> <(b3 2.7), (A3 1)>

 d i d m i d i

 <(a3 1.2), (B3 3)> <(b3 2.7), (B3 2)> <(b3 2.7), (B3 3)> <-, (B3 3)> <-, (B3 2)> <(b3 2.7), (B3 2)> <-, (A3 1)>

 / \ /m \ d /Ii
 / / I d

 <-,-> <-,-> <-,->

 gramming (Cormen, Leiserson, and Rivest 1990),
 noting where two independently developed match-
 ing paths arrive again at the same state. Recall
 that any matcher is required to make its decision
 about which state transitions to allow on the basis

 of the information in the current state only. In this
 case, a state contains only a performance note and
 a score note. By definition, two different paths
 ending in the same state will develop in exactly
 the same way. We can therefore safely combine
 paths that have common states. The result of this
 joining of paths in the tree from Figure 5 is the
 graph in Figure 6. As in the tree of Figure 5, any
 path through the graph from the root node to a ter-
 minal node represents a valid match alternative,
 from which the matcher must choose the best one.

 Although a valuable solution, the use of dy-
 namic programming still yields an enormous data
 structure for large pieces, and more optimization
 is required. Fortunately, because expansion of any
 node in the graph depends only on the contents of
 the state it represents, the order of expansion is
 not important, and it is possible to expand the
 most promising alternative first. For this, a defini-
 tion of "most promising alternative" is needed so
 that each edge or state transition is labeled with a
 cost; the most promising alternative is defined as

 the cheapest alternative. The exact cost of each
 state transition is determined by the rules of the
 matcher. By expanding nodes in order of their cost,
 the search is structured to obtain a best-first order
 of path construction in the graph, which prevents
 the computation of unnecessary information.

 The method we outline here is a variant on a

 standard algorithm for finding the shortest paths
 from one node to every other node in a directed
 graph (Dijkstra 1959). The approach of building a
 partial graph and selecting the best path in it has al-
 ready been used by van der Helm and Leeuwenberg
 (1991) to account for regularity and symmetry in
 mental codes for visual perception, and for a model
 of piano fingering (Parncutt et al. 1997) that calcu-
 lates an optimal fingering pattern among the mil-
 lions of possible alternatives.

 When one path has reached an end node, the cost
 of that path becomes an upper bound for the cost of
 other paths. This means that all partial paths with
 a cost higher than the cost of the first path need
 not be expanded any further, assuming the cost of a
 path cannot decrease. However, there could be par-
 tial paths with a cost lower than the cost of the
 first path. If, in expanding the cheaper partial
 paths, a new one reaches the end node with a lower
 cost than the first complete path, the upper bound
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 Figure 6. A graph repre-
 sentation of the tree in
 Figure 5 to prevent repre-
 senting equal branches
 more than once.

 <(a3 1.2), (A3 1)>

 d m

 dd <(a3 1.2), (B3 2)> i p <(b3 2.7), (B3 2)> d <(b3 2.7), (A3 1)>

 Sd d
 <(a3 1.2), (B3 3)> <(b3 2.7), (B3 3)> 1 <-, (B3 3)> <-, (B3 2)> <-, (A3 1)>
 I I

 I I-m d

 is lowered to the cost of this path. If there are no
 more partial paths cheaper than this upper bound,
 all the best match paths have been found.
 The mechanism of specifying an upper bound for
 the cost of a match path is also useful if more
 matches must be found than just best matches. If
 the upper bound is removed after the best paths
 have been found, the graph-building process is re-
 sumed until the set of next-best alternatives has
 been calculated.

 The process of building the graph is called phase
 one. When the relevant part of the graph has been
 built, generally more than one optimal path exists.
 Phase two consists of the selection of one path
 from a potentially large number of best paths. All
 the paths considered in phase two have an equal
 number of matches, so in the second phase the
 matcher must use other information such as timing
 to be able to distinguish the paths. A matcher can
 use much more information in this phase, because
 the number of alternatives to compare is much
 smaller. The strict matcher and the Large matcher
 do not use timing information, but rather choose a
 path in the second phase based on the order in
 which transitions occurred in the first phase. In
 their original specifications, the second phase was
 wholly or partly entwined with the first phase. By
 separating the two phases, it became apparent that

 these matchers arbitrarily choose a path in the sec-
 ond phase.

 Cost Functions

 Cost functions assign costs to transitions. A cost
 function must satisfy two constraints. First, it
 should provide a definition of the best match path.
 We defined this to be the path containing the most
 matches, or, equivalently, the fewest errors. Sec-
 ond, a cost function should assign only non-nega-
 tive costs to transitions. If the cost of a path could
 decrease with length, the upper bound provided by
 the complete path would be meaningless. Since a
 partial path more expensive than the upper bound
 could become cheaper again later.

 An infinite number of cost functions satisfy the
 constraints, but the exact definition of a cost func-
 tion has an enormous effect on the size of the

 graph generated in the first phase. A simple cost
 function satisfying the above constraints assigns a
 cost of zero to a match transition and a cost of one
 to both an insertion and a deletion transition. The
 cost of a path is then the total number of inser-
 tions and deletions in the path.

 This simple cost function will assign the same
 cost to a very short partial-match path and a com-
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 Figure 7. Best-first graph
 expansion: behind the
 state is the cost of the
 node. The order of expan-
 sion is indicated by the
 numbered lines.

 4 3 2 1
 <(a3 1.2), (A3 1)> : 0

 d~t m"

 <(a3 1.2), (B3 2)>: 1 <(b3 2.7), (B3 2)> : 0 <(b3 2.7), (A3 1)> : 1

 <(a3 1.2), (B3 3)> : 2 <(b3 2.7), (B3 3)> : 1 <-, (B3 3)> : 0 - <-, (B3 2)> : 1 <-, (A3 1)> : 2

 <-,-> : 1

 plete-match path if they have the same number of
 errors, which may lead to much unnecessary com-
 putation. Ordering the paths with the same number
 of errors according to their lengths helps in limiting
 this effect. Moreover, if the score contains more
 notes than the performance, one needs a minimum
 number of deletions in the interpretation to be able
 to reach the end state. A cost function that does
 not assign a high cost to a deletion in a state in
 which deletions are still needed is also beneficial
 for the efficiency of the search. These issues led us
 to formulate cost functions that greatly reduced
 computation time, but a more elaborate analysis is
 still needed. Because cost functions only affect the
 efficiency of the matcher and not the result, we
 will not discuss them in the rest of this article.

 An Example

 We will now give an example of how the hypo-
 thetical matcher from the previous section uses a
 best-first strategy. Returning to the example per-
 formance and score of Figure 5, suppose we use a
 simple cost function that assigns a cost of zero to a
 match and a cost of one to insertion and deletion

 errors. The matcher expands the nodes in the
 graph in a wavelike pattern, starting at the root
 node (see Figure 7). The waves reflect the order in
 which the graph is built.

 In the following sections, the strict matcher and
 the Large matcher are specified in terms of the
 general control structure. For each matcher, we
 need to specify a method to proceed through the
 score and the performance, the amount of informa-
 tion the state should contain, and the permissible
 state transitions. This determines the first phase
 of matching: building the graph. For the second
 phase, we must specify how one match path is se-
 lected from the potentially large number of match
 paths found in phase one.

 Because the strict matcher and the Large matcher
 use different parameters, it is difficult to compare
 them. For example, should the value of the maxi-
 mum-ioi parameter be equal for both, or do the
 matchers react differently to the same value? For
 this reason, we have chosen to modify them in
 such a way that no parameters are necessary. We
 have called the resulting matchers the general strict
 matcher and the general Large matcher.

 The original strict matcher decided whether a
 state in which no notes could be matched was an

 Heijink, Desain, Honing, and Windsor 51

This content downloaded from 
�������������128.32.10.230 on Thu, 28 Aug 2025 23:52:14 UTC������������� 

All use subject to https://about.jstor.org/terms



 insertion error or a deletion error, based on the
 maximum-ioi and minimum-ioi parameters. The
 general strict matcher does not attempt to decide
 on a single interpretation of a state, but allows all
 possible interpretations. It chooses the one con-
 taining the greatest number of matches after all
 the alternatives have been fully investigated, in
 phase two. Therefore, it does not need the maxi-
 mum-ioi and minimum-ioi parameters.

 The original Large matcher attempted to divide
 the performance into clusters before matching the
 performance and the score. The size of the clusters
 was based on the maximum-ioi parameter. The
 general Large matcher uses the general control
 structure to find the optimal clustering of the per-
 formance during the matching process itself.

 In the original versions of the matchers, there
 was a distinction between possible paths (only
 one, in the case of the strict matcher) and impos-
 sible paths. The general versions of the strict and
 Large matchers represent the strength of the gen-
 eral control structure in combination with a cost

 function: there is no distinction between possible
 and impossible paths. Instead, every path is more
 likely or less likely to be the best one.

 The General Strict Matcher

 The general strict matcher reads the performance
 note-by-note and the score cluster-by-cluster. This
 means that a state contains one performance note
 and a set of score notes that all have the same onset

 time. The most important distinction between the
 original strict matcher and the general strict
 matcher is that the general strict matcher always
 considers multiple alternative matches, whereas
 the original strict matcher always considers exactly
 one match alternative. Moreover, the original strict
 matcher poses some constraints on the match that
 are side effects of the implementation, rather than
 design considerations. We have lifted these con-
 straints in the general strict matcher.

 When in a particular state the performance note
 matches a note in the score cluster, a match is
 made. If the performance note does not match any
 note in the score cluster, both a deletion error and

 Figure 8. Expansion be-
 havior of the general strict
 matcher: note x matches

 (m) with a note in cluster
 Y (a); note x does not

 match any note in the
 score cluster Y, so this
 situation is an insertion

 error (i) or a deletion error
 (d) (b).

 <x.,Y> <x,Y>

 <next (x), next (Y)> <next (x), Y> <x, next (Y)>
 (a) (b)

 an insertion error are considered. This leads to the

 expansion behavior depicted in Figure 8.
 When x matches a note in the score cluster, as

 in Figure 8a, the next state contains the next per-
 formance note and the score cluster without the

 matched note. If the score cluster contains only
 one note, the next score cluster is fetched. If there
 are no matching pitches, as in Figure 8b, both an
 insertion error and a deletion error are considered.

 When the whole graph has been built, several
 match paths exist. Each of these represents a sub-
 set of all possible strict matches between score
 and performance. In the second phase, the general
 strict matcher must choose one path from this set:
 the path that the original strict matcher would
 choose.

 The original strict matcher always matches a
 performance note when possible. Suppose the
 matcher is comparing match paths A and B. It
 then searches for the first performance note, say p,
 that is matched in one alternative, but not in the
 other. If p is matched in A but not in B, the
 matcher chooses match path A over match path B,
 and vice versa. In this way, the general strict
 matcher chooses the path the original strict
 matcher would have chosen from the set of all

 complete match paths.

 The General Large Matcher

 We also have respecified the Large matcher on top
 of our general control structure. In the original
 Large matcher, both the score and the performance
 are read cluster-by-cluster. Thus, for the general
 Large matcher, every state contains a performance
 cluster and a score cluster. A score cluster is a

 group of notes with equal onset times; a perfor-
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 Figure 9. Expansion be-
 havior of the general
 Large matcher: a match
 (m), an insertion error (i),

 a deletion error (d), a sub-
 stitution error (s), or a
 performance cluster ex-
 pansion (e).

 <x, Y>

 <next (x), next (Y)> <x, next (Y)> <next (x), Y> <x + next (x), Y> <next (x), next (Y)>

 mance cluster is a group of notes such that every
 consecutive pair of notes has an interonset inter-
 val smaller than the maximum-ioi.

 In the general Large matcher, this parameter has
 been eliminated. Instead, we have introduced an
 extra transition, called cluster enlargement, that
 adds an extra note to the performance cluster. This
 transition is applicable in every state, so every
 score cluster is matched against a performance
 cluster that grows until it "fits" the score cluster.
 The cluster-enlargement transition, in combina-
 tion with the cost function, automatically finds
 the optimal clustering of the performance in the
 course of the matching process.

 Another transition is the substitution-error tran-

 sition. If both the score and the performance clus-
 ter contain exactly one note and their pitches are
 not equal, they are treated as a substitution error.

 The expansion behavior is depicted in Figure 9.
 The Large matcher is always allowed to make an
 insertion-error or a deletion-error transition, even
 if two clusters match. If a match is made, the re-
 maining nonmatching notes from the score cluster
 are considered to be deletion errors, and the re-
 maining notes of the performance cluster are con-
 sidered to be insertion errors.

 A cost function for the general Large matcher is
 more complicated than a cost function for the strict
 matcher, because the Large matcher has two extra
 transitions: substitution error and cluster enlarge-
 ment. A substitution error should be more expen-
 sive than a match and less expensive than the
 combination of an insertion and a deletion error.

 The cost of a cluster enlargement should be low if
 the performance cluster contains less notes than
 the score cluster, and high if the performance clus-
 ter contains more notes than the score cluster. In

 this way, a match path where performance clusters

 are the same size as the corresponding score clus-
 ters will be the cheapest.

 In the second phase, the general Large matcher
 chooses the best path in the graph in the same way
 as the general strict matcher. This is not always
 the same path as the Large matcher would have
 chosen, but because the choice is arbitrary in both
 cases, this choice is as good as the other, and it
 makes the matchers easier to compare.

 Further Generalizations of the Strict Matcher and

 the Large Matcher

 We have already concluded that there were some id-
 iosyncratic characteristics of the existing matchers
 that were not apparent in their original specifica-
 tions. These conclusions could only be drawn from
 the kind of analyses and respecifications we under-
 took, and they inspired us to develop the strict
 matcher into a general strict matcher and the Large
 matcher into a general Large matcher, in order to
 make their behavior more logical and comparable.
 From the specifications in the previous section, one
 sees that the general strict matcher and the general
 Large matcher are in fact very much alike. They have
 different expansion behaviors and different cost func-
 tions, but they use essentially the same strategy.

 If we allow the general strict matcher to inter-
 pret a situation where only a match would be pos-
 sible as an insertion, deletion, or a substitution,
 the general strict matcher and the general Large
 matcher can use the same cost function. If the
 two matchers use the same cost function and the

 same expansion behavior, they only differ in the
 way they process the performance, and both
 matchers will ultimately choose the same path. A
 test of the behavior of these matchers on two
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 Chopin pieces shows that this is indeed the case.
 The two matchers make the same interpretation
 of an error in 93 percent of the cases, and the dif-
 ferences in interpretation are explained by the
 substitution-error transition (Heijink, Windsor,
 and Desain in preparation).

 A Structure Matcher

 Neither the general strict matcher nor the general
 Large matcher can cope with extreme expressive
 timing or with ornaments in a satisfactory way. In
 order to better deal with these problems, we pro-
 pose another matcher. This matcher, called the
 structure matcher (Heijink 1996; Desain, Honing,
 and Heijink 1997) is based on the idea that tempo-
 ral structure annotated in the computer score gives
 a matcher more clues regarding how to interpret
 the performance, analogously to structural annota-
 tions in a paper score giving a human listener more
 clues. This is also motivated by the observation
 that, while expressive timing may greatly upset the
 order of events as specified in the score, it mainly
 does so in ways respecting the musical structure
 (Desain and Honing 1992). For instance, notes in a
 melodic line are not likely to be played in a differ-
 ent order, while parallel voices can be timed inde-
 pendently of each other, so notes in two parallel
 voices may occur in any order.

 If temporal structure (e.g., chords, voices, etc.) is
 annotated in the score, we can predict which order
 constraints will be observed. These annotations en-

 able us to deal with expressive timing and handle
 the problem depicted in Figure 3. We restrict the
 discussion here to two types of temporal structure,
 annotated as S (for sequential) and P (for parallel) in
 the score. A sequential object comprises a number
 of objects occurring one after the other, for in-
 stance, a melody. A parallel object is comprised of
 a number of objects occurring simultaneously, e.g.,
 a chord. The score is then a hierarchical structure
 in which the lowest level contains notes and all

 higher levels contain structural units (S or P).
 Most performances cannot easily be divided into

 clusters, and we therefore decided to have the
 structure matcher process the performance note-

 Figure 10. Expansion be-
 havior of the structure
 matcher: a match (m), an
 insertion error (i), or a de-
 letion error (d).

 <x,Y>

 i00m d
 <next (x), Y> <next (x), next (Y)> <x, next (Y)>

 by-note. Processing the score is more difficult ow-
 ing to the structural annotations. For example,
 consider a case where the score contains several

 parallel voices. Instead of examining one score
 cluster at a time, the structure matcher examines
 several score clusters (one for each voice). The
 matcher can move forward in any voice indepen-
 dently of the others, because each voice can be in-
 dependently timed.

 The information in a state is limited to a perfor-
 mance note and one score cluster for each voice.

 The matcher does not require any parameters, and
 the expansion behavior is kept simple, as Figure 10
 shows. Essentially, this expansion behavior is the
 same as the general Large matcher, except that the
 performance is processed note-by-note, so the clus-
 ter-enlargement transition is not necessary. We de-
 cided not to interpret combinations of errors in the
 first phase, and to exclude the substitution-error
 transition.

 If the score is annotated in such a way that it is a
 sequence of chords, the only difference between
 the general strict matcher and the structure
 matcher is their expansion behavior. (Compare Fig-
 ures 8 and 10.) If the score is annotated in another
 way, the structure matcher behaves like an orga-
 nized set of parallel strict matchers, thereby lifting
 the restrictions on score structure of the general
 strict matcher and the general Large matcher.

 The behavior of the structure matcher has been

 compared to the behavior of the other two match-
 ers in matching two Chopin pieces. The results
 show that the structure matcher performs much
 better than the other two matchers. When the

 structure matcher interprets a note as an error, the
 matcher is correct in 85 percent of the cases, while
 the general strict matcher and the general Large
 matcher are correct in 42 percent and 46 percent of
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 the cases, respectively (Heijink, Windsor, and
 Desain in preparation).

 The structure matcher does not make the cor-

 rect interpretation in all cases, because it only
 uses pitch and onset information. Moreover, the
 onset information is only used to establish the or-
 der of the notes: actual timing information is not
 used. In some cases, however, more information is
 needed to be able to make the correct decision

 (Heijink, Windsor, and Desain in preparation).

 Conclusion

 We have discussed several approaches to matching
 notes in a musical performance with the corre-
 sponding notes in the score. Although matching is
 an easy task for experienced human listeners,
 matching algorithms are sometimes not very suc-
 cessful. This is especially true when performance
 errors occur, when extreme expressive timing is
 used, or when there are underspecified ornaments
 in the score.

 Such difficulties have led some researchers to

 abandon matching, or to overestimate the prob-
 lems involved. Dynamic programming has proved
 an elegant solution to these difficulties. It allows
 exploration of multiple alternative matches while
 considering combinatorial possibilities. This ap-
 proach has already been proposed by previous au-
 thors, but we use it more extensively as a general
 control structure underneath reimplementations
 of two different matchers. We also implement this
 approach in a new matcher that uses structural an-
 notations in the score.

 The general strict matcher, the general Large
 matcher, and the structure matcher turned out to
 be very similar. The matchers only differ in expan-
 sion behavior and in the use of order constraints,
 but they are all instances of the same approach.
 The use of structural information leads to a much

 better match, as is shown by Heijink, Windsor,
 and Desain (in preparation).

 We believe we have shown that there are insuffi-

 cient grounds for pessimism with regard to the fea-
 sibility of robust score-performance matching.
 Although not all problems have been solved, ro-

 bust score-performance matching is feasible if we
 can more fully exploit the link between the musi-
 cal knowledge that is expressed or implied in pa-
 per scores and its rendition in musical
 performances.

 Future Work

 A fundamental area of study is the nature of per-
 formance mistakes (see, for example, Palmer and
 van der Sande 1993) and their interpretation by a
 matcher. Knowledge of categories of mistakes and
 how often mistakes in a particular category are
 made in various situations can be used in the com-

 putation, as is done in a simple form by the Large
 matcher.

 The annotations used to indicate sequential or
 parallel structures for the structure matcher could
 also be used to specify ornaments, so specialized
 matchers could be invoked at the appropriate time
 to deal with these ornaments. The advantage of
 having specialized matchers is that knowledge of
 special and complex cases need not be centralized,
 thereby keeping the algorithm simpler.

 The efficiency of the matchers is a problem that
 is closely related to the problem of finding a good
 cost function. We have seen that pitch information
 is often not adequate to distinguish several possible
 match paths. The use of other information, such as
 timing information in the first phase (Vantomme
 1995) rather than in the second phase, would limit
 the size of the graph, but would also limit the gen-
 erality of the general control structure.

 A practical part of the work will be to make the
 matchers and related tools available in POCO, and
 to make POCO directly accessible over the World
 Wide Web. Progress on this will be reported at
 www.nici.kun.nl/mmm.
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