
The Vibrato Problem: Comparing Two Solutions

Author(s): Henkjan Honing

Source: Computer Music Journal , Autumn, 1995, Vol. 19, No. 3 (Autumn, 1995), pp. 32-
49

Published by: The MIT Press

Stable URL: https://www.jstor.org/stable/3680653

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer
Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/3680653

 Henkjan Honing
 Institute for Logic, Language, and Computation
 (ILLC)
 Faculty of Mathematics and Computer Science
 University of Amsterdam
 Spuistraat 134
 NL-1012 VB Amsterdam, The Netherlands
 Honing@FWI.uva.nl

 The Vibrato Problem:

 Comparing Two
 Solutions

 In discussing the formalization of musical knowl-
 edge, this article describes an important music-
 representation issue, the "vibrato problem." This
 problem characterizes the need for a knowledge
 representation that can reflect both discrete and
 continuous aspects of music at an abstract and
 controllable level. Two formalisms of functions of
 time that support this notion are compared: the
 approach used in the Canon family of computer
 music composition systems (Dannenberg,
 McAvinney, and Rubine 1986; Dannenberg 1989;
 Dannenberg, Fraley, and Velikonja 1991), and the
 Generalized Time Functions (GTF) Formalism of
 Desain and Honing (1992a, 1993). The comparison
 is based on a simplified version of Dannenberg's
 Arctic, Canon, and Fugue systems (referred to as
 ACF), obtained from the original programs using
 an extraction technique, and a simplified version
 of the GTF system that was made syntactically
 identical to ACF. In general, both approaches solve
 the vibrato problem, though in very different
 ways. The differences are explained in terms of ab-
 straction, modularity, flexibility, transparency,
 and extensibility-important issues in the design
 of a representational system for music (Honing
 1993b).

 Aspects of Musical Knowledge

 In music representation, a distinction can be made
 between discrete, symbolic representations (such
 as music notation) and continuous, numerical rep-
 resentations (as audio or control signals) (see, e.g.,

 De Poli, Piccialli, and Roads 1991). In common
 practice Western music notation can represent
 symbolic constructs such as notes, rests, accents
 or meter, but it lacks ways of describing the con-
 tinuous aspects of music (for example, the indi-
 vidual shaping of a note), other than using simple
 symbols or words such as tremolo or sforzato in
 the score. By contrast, an audio-signal representa-
 tion allows a "complete" description of a piece of
 music, with all its continuous aspects. It includes,
 for example, the instrument's sound quality, the
 room acoustics, etc. This type of representation
 does not have symbolic characteristics, however;
 we cannot (at least not directly) derive from it the
 different streams or voices, the beginning of a
 note, or the metrical structure.

 A similar distinction can be found in computer
 music systems, with discrete, note- and event-ori-
 ented MIDI systems at one end, and continuous,
 signal-oriented, Music V-like systems at the other.
 Sometimes one type of representation is more ap-
 propriate than the other, but a powerful represen-
 tation system for music must integrate both
 aspects. To give an example, one might want to
 describe how certain parameters change continu-
 ously over time, with respect to specific parts or
 levels of the discrete structure. The representation
 system must incorporate specific knowledge on
 how these parameters change or behave under
 transformation of that structure (for instance, how
 a rhythmic fragment's particular kind of phrasing
 depends on its duration). We need to communicate
 information between the continuous and discrete

 aspects of a representation, passing information
 from the discrete components (for example, notes)
 to the continuous components (such as control
 functions), and vice versa. The "vibrato problem"
 (Desain and Honing 1992a) is a relatively simple

 Computer Music Journal, 19:3, pp. 32-49, Fall 1995
 ? 1995 Massachusetts Institute of Technology.

 32 Computer Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 representational problem, characterizing the kind
 of control that is needed.

 The Vibrato Problem

 In Figure la, a continuous (control) function is
 used for the pitch attribute of a discrete object--a
 note. The problem revolves around what should
 happen to the shape or form of the pitch contour
 of a vibrato when it is used for a longer note, or,
 equivalently, when the note is stretched. In the
 case of its interpretation as a simple sinusoidal vi-
 brato, some extra vibrato cycles should be added
 to the pitch envelope (see the first frame in Figure
 1b)-when interpreted as a sinusoidal glissando,
 the pitch contour should be elastically stretched
 (see the second frame in Figure ib). However, all
 kinds of intermediate and more complex behaviors
 should be expressible as well (see third and fourth
 frames in Figure ib). A similar kind of control is
 needed with respect to the start time of a discrete
 object (see Figure lc): What should happen to the
 contour when it is used for an object at a different
 point in time, or, equivalently, when the note is
 shifted? Again, a large range of possible behaviors
 can be thought of, depending on the interpretation
 of the control function, i.e., the kind of musical
 knowledge embodied-attack-transients, indepen-
 dent or synchronized vibrati, or other functions of
 time (see Figure ld).

 To get the desired isomorphism between the
 representation and the reality of musical sounds, a
 music representation language must support a
 property that we will call "context-sensitive poly-
 morphism." "Polymorphism" for the fact that the
 result of an operation (like stretching) depends on
 its argument type (e.g., a vibrato time function be-
 haves differently under a stretch transformation
 than a glissando time function), "context-sensi-
 tive" because an operation is also dependent on
 the lexical context in which it is used. As an ex-

 ample of the latter, interpret the situation in Fig-
 ure 1 c as two notes that occur in parallel, with one
 note starting a bit later than the other. The behav-
 ior of this musical object under transformation is

 now also dependent on whether a particular con-
 trol function is linked to the object as a whole
 (i.e., to describe synchronized vibrati; see second
 frame in Figure ld), or is associated with the indi-
 vidual notes (e.g., an independent vibrato; see first
 frame in Figure 1d). Specific language constructs
 are needed to made a distinction between these
 different behaviors.

 Note that the vibrato problem is, in fact, a gen-
 eral issue in temporal knowledge representation,
 and is not restricted to music. In animation, for
 example, we could use similar representation for-
 malisms. Think, for instance, of a scene in which
 a comic-strip character walks from point A to
 point B in a particular way. When one wants to
 use this specific behavior to have the character
 walk over a longer distance, should the character
 make more steps (cf. vibrato) or take larger steps,
 i.e. should it start running (cf. glissando)?

 Dannenberg (1989) describes the "drum roll
 problem"-the discrete analogy of the vibrato
 problem-which in the case of stretching should
 be extended by adding more drum hits, instead of
 slowing down the rate of the drum roll. Several
 systems are based on this idea: the Arctic system
 (Dannenberg, McAvinney, and Rubine 1986), the
 Canon score language (Dannenberg 1989), the
 Fugue composition language (Dannenberg, Fraley,
 and Velikonja 1991), and Fugue's latest incarna-
 tion, Nyquist (Dannenberg 1993). Although these
 systems differ in several aspects, they all use a
 transformation system similar to the one proposed
 in Arctic. This shared mechanism of Arctic,
 Canon, and Fugue (and Nyquist) will be referred to
 as the ACF transformation system.

 The core of the observations in this study are
 based on analyzing the behavior of simplified ver-
 sions of ACF and GTF, extracted from the original
 code using programming language transformation
 techniques (e.g., Friedman, Wand, and Haynes
 1992). This technique of extraction (Honing
 1993a), making a small program from a larger sys-
 tem, is an attractive alternative to rational recon-
 struction (e.g., Richie and Hanna 1990). We will
 refer to such a simplified program as micro-version
 or microworld. It consists of a relatively complete

 Honing 33

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 1. The vibrato
 problem. First, what
 should happen to a con-
 trol-function contour
 when used for a discrete
 musical object with a dif-
 ferent length? For ex-
 ample, a sine wave

 control function is associ-
 ated with the pitch at-
 tribute of a note-vibrato
 (a); possible pitch con-
 tours for the stretched
 note, depending on the in-
 terpretation of the origi-
 nal contour, are shown in

 (b). Second, what should
 happen to the pitch-con-
 tour form when used for a
 discrete musical object at
 a different point in time
 (c)? Possible pitch con-
 tours for the shifted note
 are shown in (d). There

 is, in principle, an infinite
 number of solutions, de-
 pending on the type of
 musical knowledge em-
 bodied by the control
 function.

 4 stretch duratio hift onset

 9 ?

 i ..:ii...! (a) i.......(. iiiiiiiii (c)
 time -+ time --

 T

 time --
 etc.

 (b) (d)

 time -t

 etc.

 34 Computer Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 set of essential objects and mechanisms, and at the
 same time it is small and easy to comprehend.

 Shared Framework of ACF and GTF

 First, we will describe the set of musical objects,
 time functions, and their transformation that is
 shared by the ACF and GTF micro-versions. The
 full Lisp source code of the micro-versions is avail-
 able by Internet ftp from the Computer Music
 Journal archives; it can be found in the directory
 with the uniform resource locator (URL) ftp://
 www-mitpress.mit.edu/Computer-Music-Journal/
 Code/ACFGTF. Both micro-versions use the
 Canon syntax (Dannenberg 1989). On some points
 the ACF systems differ among themselves, this
 will be noted where appropriate. The examples
 will be presented with their graphical output, us-
 ing the micro-versions mentioned above.

 In general, both the ACF and GTF systems pro-
 vide a set of primitive musical objects (in ACF
 these are referred to as "behaviors"), and ways of
 combining them into more complex objects. Ex-
 amples of basic musical objects are note-with
 parameters for duration, pitch, amplitude, and
 other attributes that depend on the synthesis
 method used, and pause-a rest with duration as
 its only parameter. These basic musical objects
 can be combined into compound musical objects
 using the time structuring constructs seq (for se-
 quential ordering) and sim (for simultaneous or
 parallel ordering). Some examples are given in Fig-
 ure 2, which shows simple pitch-time diagrams.

 New musical objects can be defined using the
 standard procedural abstraction (function defini-
 tion) of Lisp, for example, the following Lisp ex-
 pression defines a function named melody that
 consists of three sequential notes. Figure 3 shows
 an example of its use in a simplified pitch-time
 diagram where the thickness of the "note" corre-
 sponds to its loudness.

 ;;; define a function
 (defun melody ()

 ; ; ; that produces a sequence
 ;;; of three notes given as

 Figure 2. Examples of ba-
 sic and compound musi-
 cal objects in the ACF
 family of languages and
 GTF. Pitches are given as
 MIDI key numbers, dura-
 tion as seconds, and am-
 plitude on a 0 to 1 scale.
 A note with pitch 60, du-
 ration 1, and maximum

 amplitude (a); a sequence
 of a note, a rest, and an-
 other, shorter note (b);
 and three notes in paral-
 lel, each with different
 pitches and amplitudes
 (c). The height of each
 note bar is proportional to
 the corresponding note's
 amplitude.

 (note 60 1 1)

 T
 .4 64

 63

 62

 61

 60

 o(a) 0 1 2 3 (a) time --
 (seq (note 62 1 1)

 (pause 1)
 (note 61 .5 1))

 64

 63

 62

 61

 60

 (b) o i 3

 (sim (note 62 1 .2)
 (note 61 1 .8)
 (note 60 1 .4))

 64

 63

 62

 617M

 (c) 0 i

 ; ; ; (note pitch duration amplitude)
 (seq (note 60 .5 1)

 (note 61 .5 1)
 (note 62 .5 1)))

 Both ACF and GTF provide a set of control func-
 tions-functions of time-and ways of combining

 Honing 35

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 3. Pitch vs. time
 diagram of a sequence
 that consists of a user-de-
 fined musical object (a
 three-note melody) played
 twice.

 Figure 4. Two examples of
 a note that is parameter-
 ized with basic time func-
 tions given as its pitch
 values. An interpolating
 linear ramp with start

 and end values as param-
 eters (a), and a sine wave
 oscillator with offset,
 modulation frequency,
 and amplitude as param-
 eters (b).

 (seq (melody) (melody)) -

 64.

 63-

 62

 61

 0 1 2 3

 them. We will use two basic time functions in this

 article: a linear interpolating ramp function, and
 an oscillator that generates a sine wave.

 There are alternative ways of passing time func-
 tions to musical objects. One method is to pass a
 function directly as an attribute to, for instance,
 the pitch parameter of a note (see Figure 4). An al-
 ternative method is to make a musical object with
 simple default values and to obtain the desired re-
 sult by transformation. In one context the first
 method might be more appropriate, in another
 context, the latter. The following examples show
 the equivalence between specification by means of
 transformation and by parameterization (their out-
 put is as shown in Figure 4a and 4b, respectively):

 ;;; specification by transformation
 ;; of a ramp glissando
 (trans (ramp 0 1) (note 60 1 1)) =
 ;;; specification by parameterization
 (note (ramp 60 61) 1 1))

 ;; specification by transformation
 ;;; of a vibrato using an oscillator
 (trans (oscillator 0 1 1) (note 61 1 1)) =
 ;;; specification by parameterization
 (note (oscillator 61 1 1) 1 1))

 Note that, while specification by means of
 transformation is supported in both ACF and GTF,
 specification by means of parameterization is only
 available in Arctic and GTF.

 Finally, both systems support different types of
 transformations. As an example of a time transfor-
 mation, stretch will be used (see Figure 5a). This
 transformation scales the duration of a musical ob-

 (note (ramp 60 61) 1 1) =

 64-

 63

 621

 61

 (a) o 1 2 3

 (note (oscillator 61 1 1) 1 1) -

 64

 63

 62

 61

 60o

 (b) 2 3

 ject (its second parameter) by a given factor (its
 first parameter). As examples of attribute transfor-
 mations we will use one for pitch (named trans),
 and one for amplitude (named loud). These trans-
 formations take constants (see Figure 5b, 5c, and
 5d) or time functions (see Figure 5e and 5f) as their
 first argument, and the object to be transformed as
 their second argument.

 The ACF Transformation System

 A central concept in the ACF systems is the notion
 of a transformation environment. This environ-

 ment, or context, is implemented as a number of
 global variables that are dynamically bound and
 serve as implicit parameters to every "behavior"
 (i.e., musical object). Behaviors, transformations,
 and time functions can, in principle, inspect, ig-
 nore, or modify these variables. They are proce-
 dures that know how to change (or "behave") in
 response to, for example, a stretching or transposi-

 36 Computer Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 5. Examples of
 transformations on musi-
 cal objects: a time trans-
 formation-stretch (a);
 a constant amplitude
 transform a tion--l ou d

 (b); and a constant pitch
 transform a tion-tr an s
 (c). A few of the many
 possible nestings of these
 two transformations are
 shown: a transposed quiet

 melody (d) and a time-
 varying pitch transforma-
 tion (e); and a
 time-varying amplitude
 transformation (f).

 (stretch 2 (melody)) -=

 64

 63-

 62--

 61-

 60-

 (a) 0 1 2 3

 (loud -0.4 (melody)) -

 64.

 63-

 62

 61,

 60

 (b) 0 1 2 3

 (trans 2 (melody)) -

 64-

 63

 62

 61-

 (c) o i 30

 (trans 2 (loud -0.4 (melody))) -=

 64

 63m-

 62

 61

 60

 (d) 0 1 2 3

 (trans (ramp 0 2) (note 60 1 1)) -=

 64

 63

 62

 61

 60

 (e) o0 2 3

 (loud (ramp 0 -1) (note 62 1 1))

 64-

 63

 62

 61

 60

 f) 0 3

 tion transformation, and produce continuous sig-
 nals (e.g., graphical output or MIDI) as a side effect.
 The ability of behaviors to adapt themselves-in
 their own specific way-to changes of the values of
 these environment variables is the basis of the ACF
 solution to the vibrato problem; for example, a vi-
 brato behavior will behave differently in an envi-
 ronment modified by a stretch transformation
 than will a glissando behavior.

 While dynamic binding is a popular program-
 ming technique, it often makes a proper under-
 standing of the resulting execution very difficult.
 To get a precise insight in how ACF makes use of
 this technique, we first concentrate on the special
 variables in the environment that have to do with

 time, and take a simple note behavior as an ex-
 ample. We will use diagrams to illustrate the spe-
 cific communication of these implicit parameters

 Honing 37

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 6. The variable
 binding and scope-of-ref-
 erence diagram for the ex-
 pression (note p d).
 The symbol -- is used for
 assignment, + for addi-
 tion, and x for multiplica-
 tion; italics are used for
 functions, bold type for
 formal parameters, bold

 names above a frame in-
 dicate an operator or
 transformation, and
 curved arrows emphasize
 references. Although
 note, in reality, has more
 than two parameters, in
 these diagrams it is suffi-
 cient to look at pitch p
 and duration d only.

 Figure 7. Binding and
 scope diagram for the ex-
 pression (seq (note po
 do) (note p, d,)), a se-
 quence of two notes. See
 Figure 6 caption for sym-
 bol explanations.

 Figure 8. Binding and
 scope diagram for the ex-
 pression (sim (note po
 do) (note p, d1)), two
 notes in parallel. See Fig-
 ure 6 caption for symbol
 explanations.

 s 4- 0

 F - 1

 note

 start +- S
 duration - dx F

 return(start + duration)

 S --0

 F 4- 1
 seq

 S 4- note
 start 4- S

 duration -- do x F

 return(start + duration)

 s- note1

 start 4- S

 duration 4- x X F

 return(start + duration)

 Figure 7

 s 4- 0

 F4- 1

 sim

 e0 4-note0
 start 4- S

 duration do x F

 return(start + duration)

 e1 4-note
 start 4- S

 duration 4- d x F

 return(start + duration)

 return(max(eO, eI))
 Figure 8

 and the dynamic binding scheme used. In the fig-
 ures that illustrate variable binding, the symbol *-
 is used for assignment, + for addition, and x for
 multiplication. Italics are used for functions, bold
 type for formal parameters, bold names above a
 frame for an operator or transformation, and
 curved arrows emphasize references.

 There are two implicit parameters in the envi-
 ronment that have to do with time. One holds the

 current start time (called time in the ACF sys-
 tems, but here referred to as start or s, to distin-
 guish it from actual time or "now"), the other a
 duration stretch factor (called dur in Arctic and
 Canon, and stretch in Fugue; we will use
 stretch or F, to avoid confusion with duration).
 The global environment is initially set with s
 (start time) as 0 and F (stretch factor) as 1 (see
 Figure 6). A note procedure, evaluated in this en-
 vironment, derives its start time and its stretched
 duration (i.e., product of the note's formal param-
 eter d, for duration, and F) from these implicit pa-
 rameters found in the environment in which the

 note is evaluated. The body of note (indicated
 with an ellipsis in Figure 6) may refer to these
 time parameters. Note that behaviors return their
 end time (or logical stop time, as it is referred to
 in the ACF systems) for use by the time structur-
 ing behaviors seq and sim.

 In Figure 7, an example of the seq behavior is
 shown. It modifies the environment and as a result

 (using dynamic binding), influences the behavior
 of note. The returned end time, after evaluating

 38 Computer Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 9. Binding and
 scope diagram for the ex-
 pression (stretch n
 (note p d)), a note
 made n times as long. See
 Figure 6 caption for sym-
 bol explanations.

 Figure 10. Binding and
 scope diagram for the ex-
 pression (trans n
 (note p d)), a note
 with a pitch transposed
 by a constant n. See Fig-
 ure 6 caption for symbol
 explanations.

 Figure 11. Binding and
 scope diagram for the ex-
 pression (trans (oscil-
 lator of a) (note p
 d)), a note with a pitch
 transposed by a sine wave
 time function constructor
 with parameters offset,
 modulation frequency and
 amplitude. S 4- 0

 F - 1

 stretch

 F +- n X F

 note

 start 4- S

 duration +- d x F

 return(start + duration)

 S 0-

 F +- 1
 transpose 4- 0

 trans

 transpose 4- n + transpose

 note

 start 4- S

 duration - d x F

 pitch 4- p + transpose

 return(start + duration)

 Figure 10

 S +- 0

 F +- 1

 transPose 4- 0
 tran

 transpos 4- oscillator

 return(X(t)o+asin29f(t-S))

 transpose
 note

 start 4- S

 duration 4- d x F

 pitch 4- p 9 transpose

 return(start + duration)

 Figure 11

 the first note, is used to set the value of s. This
 new value is then used when evaluating the next
 note, resulting in the notes being ordered (i.e.,
 played or drawn) one after the other.

 A sim behavior, conversely, will evaluate all its
 arguments with the same start time and return the
 maximum end time (see Figure 8).

 A time transformation in this diagrammatic no-
 tation is shown in Figure 9. The stretch transfor-
 mation alters the duration stretch factor of the

 enclosing environment by multiplying it with a
 factor. As a result, the note's duration will be n
 times as long for a stretch factor of n.

 The next example is an attribute transformation
 (Figure 10). The trans transformation is used for
 transposing the pitch of behaviors (if they have
 such an attribute). The special variable trans-
 pose is therefore introduced in the environment
 as illustrated in Figure 10. The note behavior adds
 the value of transpose to its own explicit pitch
 (the formal parameter p). For every other trans-
 formable attribute (e.g., loudness, channel, or ar-
 ticulation factor), such a special attribute variable
 is added to the environment.

 Finally, in Figure 11 a time-varying transforma-
 tion is shown in the same diagrammatic way for
 comparison. In this example, an oscillator
 function is an argument to the trans transforma-
 tion. Instead of adding a constant value to the
 value of transpose, a new expression is built
 from the result of evaluating the oscillator
 constructor and the value of transpose in the en-

 closing environment (here it is 0, but could be a
 time function as well). The note procedure body
 (i.e., the ellipsis in Figure 11) can refer to this
 "composed" pitch value. Note that oscillator
 is actually a time function constructor, that is, it
 returns a time function. Lambda expressions are
 used to refer to these anonymous time functions.

 They are of the form A(x1, ..., xn)e, where x1, ..., xn
 are parameter names and e some expression.

 Honing 39

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Implementation

 The technique used to make nesting of operations
 on different attributes possible, and to communi-
 cate the appropriate values of the environment vari-
 ables to the behaviors, is dynamic binding. Time
 functions, behaviors, and transformations can refer
 to free, but invisible (at the user-level) environment
 parameters. It simplifies procedure-call by using
 implicit parameters that communicate information
 to the behaviors (start, stretch, transpose,
 etc.), and, therefore, mainly cleans up the syntax
 (i.e., syntax abstraction). (Note that the transforma-
 tions in ACF are coded as Lisp macros, not as func-
 tions.) However, since these environment
 parameters play a central role in the behavior of the
 language, the user must be aware of its workings
 when using or extending the language, so there is
 no real abstraction from these implementation de-
 tails (see Abelson and Sussman 1985).

 Furthermore, a particular kind of delayed evalu-
 ation is used. Symbolic expressions, describing
 functions of time, are combined into new expres-
 sions that are not yet evaluated. Only at run-time
 (for example, when the picture is generated) will
 these expressions be evaluated, and return a fully
 transformed function of time. This mechanism
 and the functions of time are made explicit in the
 ACF microworld using a time function combinator
 (shown as G in the figures).

 Equation 1 shows an example of a time function
 constructor (oscillator) that returns an anony-
 mous function of time X(t). Its behavior is described
 by an expression that has access to time t, the for-
 mal parameters of the oscillator constructor,
 i.e., o (offset), f (frequency), and a (amplitude),
 and to S (start time) that is bound to its value in
 the enclosing environment (cf. Figure 11).

 oscillator(o, f,a)= A(t)o+ asin 2f(t - S) (1)

 The evaluation of, for example, (oscillator 62
 1 0.5), will produce a closure that consists of a
 function of time k(t) that has bindings to its three
 formal parameters (o, f, and a) and to the current
 (i.e., define time) value of S (S is not a formal pa-
 rameter).

 The GTF Formalism

 The approach that was taken in Desain and Hon-
 ing (1992a, 1993) is that of a mixed representa-
 tion-describing those aspects that are best
 represented numerically by continuous control
 functions, and those aspects that are best repre-
 sented symbolically by discrete objects. Together,
 these discrete musical objects and continuous con-
 trol functions can form alternating layers of dis-
 crete and continuous information. For example, a
 phrase can be associated with a continuous ampli-
 tude function, while consisting of notes associated
 with their own envelope functions, which are in
 turn divided into small sections, each with its spe-
 cific amplitude behavior. The lowest layer could
 even be extended all the way down to the level of
 discrete sound samples.

 With respect to the continuous aspects (the vi-
 brato problem), control functions of multiple argu-
 ments were proposed-so called "time functions of
 multiple times" or generalized time functions
 (GTF). These are functions of the actual time, start
 time and duration (or variations thereof) that can be
 linked to a specific attribute of a musical object.

 If we ignore for the moment the dependence of
 time functions on absolute start time, they can be
 plotted as three-dimensional surfaces; they show a
 control value for every point in time, given a cer-
 tain time interval (see Figure 12). Similar plots
 could be made that show a surface dependent on
 start time. A specific surface describes the behav-
 ior under a specific time transformation (e.g.,
 stretching the discrete object it is linked to). This
 surface is shown for a simple sinusoidal vibrato
 (Figure 12a) and a sinusoidal glissando (Figure 12b).
 In these pictures, the flat triangle-shaped surface
 of a constant value should be considered unde-
 fined. An extension of the GTF micro-version ex-

 plicitly deals with defining reasonable
 extrapolations of these functions outside the time
 interval of the object they are used for, but this is
 beyond the scope of this article.

 A vertical slice through such a surface describes
 the characteristic behavior for a certain time inter-

 40 Computer Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 12. Two surfaces
 showing the values for
 generalized time func-
 tions as a function of time
 and duration (start time
 is ignored in this depic-
 tion). In the case of a si-
 nusoidal vibrato, we add

 more periods of the vi-
 brato function for longer
 durations (a), whereas for
 a sinusoidal glissando,
 the function stretches
 along with the duration
 parameter (b).

 Figure 13. A more com-
 plex generalized time
 function as a function of
 time and duration (start
 time is ignored in the de-

 piction). The appropriate
 time function to be used
 for an object of a certain
 duration is a vertical slice

 out of the surface.

 4)

 (a)

 1 start

 (b)

 val-the specific time function for a musical ob-
 ject of a certain duration, as shown in Figure 13.

 Furthermore, there are standard ways of combin-
 ing basic GTFs into more complex control func-
 tions, using a set of combinators (compose,
 concatenate, multiply, add, etc.), or by supplying
 GTFs as arguments to other GTFs while the com-
 ponents retain their characteristic behaviors. Dis-

 i

 ?;2;

 Isrart -3
 ~?s~:lr""

 e\aps

 crete musical objects (like note and pause) also
 have standard ways of being combined into new
 ones (e.g., using the time structuring functions S
 and P-similar to seq and sim in ACF). To inte-
 grate these continuous and discrete aspects, the
 system provides facilities that support different
 kinds of communication between continuous con-

 trol functions and discrete musical objects. For
 example, control functions can be passed to attrib-
 utes of musical objects either by parameterization
 (one passes it directly to an attribute of, e.g., a
 note) or by transformation (where the musical ob-
 jects have default values for their attributes and
 the desired result is obtained by transformation of
 the object). Several other paths of communication
 are supported as well, for instance, passing control
 functions "laterally" between musical objects (i.e.,
 to have access to the control functions of the, pre-
 ceding or succeeding musical objects in a se-
 quence, e.g., to represent transitions between
 notes) or a "bottom-up" type of communication
 where some outer control function is dependent
 on the behavior of one or more embedded control

 functions (e.g., when defining an overall amplitude
 time function that behaves like a compressor).
 However, we will not discuss these types of com-

 Honing 41

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 munication here (see Desain and Honing 1993 for
 more details).

 Implementation

 Musical object generators (like note, seq, or sim)
 are functions of start time, stretch factor, and an
 environment. The latter supports a purely func-
 tional notion of environment (Henderson 1980),
 and is mainly used to define attribute transforma-
 tions in the microworld (see attribute-trans-
 form in the GTF micro-version). Other usage is
 beyond the scope of this article. Musical object
 generators can be freely transformed by means of
 function composition, without actually being cal-
 culated, using delayed evaluation. These functions
 are then only applied to a given start time, stretch
 factor, and environment, and return data structure
 describing the musical object that, in turn, can be
 used as input to a play or draw system. This data
 structure could take many forms, as long as it con-
 tains the start time and duration of the object and
 it is possible to associate GTFs with attributes of
 such objects. In the GTF micro-version, an ad hoc
 unstructured event-list representation is used for
 simplicity-the full system uses a more elegant
 set of hierarchical musical objects.

 Generalized time functions are functions of

 three arguments, start, duration and actual time
 (i.e., k(s, d, t)). Equation 2 shows an example of an
 oscillator time function constructor that re-

 turns such a function (Note that in the case of os-
 cillator, the duration parameter d is ignored.)

 oscillator(o, f, a) = A(s, d, t)o + a sin 2rnf(t - s) (2)

 The interpreter system that, for example, gener-
 ates pictures or prints text, will communicate the
 start time (s) from the object with whose attribute
 the GTF is associated, and sample the resulting
 time function (i.e., a slice out of the specific GTF
 space; cf. Figure 13) according to the needs of the
 output medium.

 The micro-version of the GTF system contains
 only the objects and mechanisms central to the
 current discussion. The naming and order of argu-
 ments of the top-level functions is adapted such

 that the user-level syntax is identical to that in
 the ACF micro-version.

 Comparison

 As we saw above, in the ACF systems, a time func-
 tion is a function of time that has access to vari-

 ables representing duration, start, and stretch factor.
 In the GTF formalism, a time function is a function
 of multiple arguments-start, duration, and actual
 time. Both formalisms acknowledge that, next to
 absolute time, both start time and duration are
 needed to describe appropriate time-varying behav-
 ior under time transformation-for example, to be
 able to distinguish between a glissando and a vi-
 brato. There are, however, several fundamental dif-
 ferences between the two formalisms that are not

 easily identified at first sight. To explore them, the
 syntax of the GTF was made identical to ACF. With
 this identical syntax, we can "port" expressions
 from GTF to ACF and vice versa, and compare the
 (graphical) output-when identical expressions re-
 sult in the same graphical output, we know that the
 systems have the same semantics.

 Referential Transparency

 First, let us look at an example of a compound mu-
 sical object as shown in Figure 14a. It consists of
 two notes in a sequence separated by a rest. Both
 notes have an oscillator time function associ-

 ated with their pitch attribute, a duration of 1.0
 sec and 1.5 sec, respectively, and constant ampli-
 tude. The pause has a duration of 0.5 sec. The ex-
 pression has identical output in ACF and GTF.

 Suppose we want to abstract from this particular
 expression. We can do this by making a procedure
 (using Lisp function definition) that takes any
 time function and communicates it to the pitch
 parameter of the notes. This would give us the fol-
 lowing expression.

 ;;; abstract from the pitch parameter
 (defun a-musical-object (pitch)

 (seq (note pitch 1 1)

 42 Computer Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 (pause .5)
 (note pitch 1.5 1)))

 When we look at the output of this function ap-
 plied to the same time function that was used in
 Figure 14a, we see that its semantics are different
 in ACF and GTF, as is illustrated in Figure 14b. In
 ACF, the sine wave extends over the rest, whereas
 in GTF the sine wave starts at phase 0 at the be-
 ginning of each note. The same thing happens in
 the closely related expression shown in Figure 14c
 that uses a let binding (the let construct being
 useful "syntactic sugar" for function application).
 This specific difference in semantics between ACF
 and GTF can be explained by having a closer look
 at the two definitions of an oscillator time
 function in the two formalisms (the equations for
 which are repeated below).

 ACF: oscillator(o, f, a) = A(t)o + a sin 2;rf(t - S) (3)

 GTF: oscillator(o, f, a) = A (s, d, t)o + a sin 2rf (t - s) (4)

 This seemingly small difference in implementa-
 tion has an important effect on the workings of
 the systems. In the GTF definition of oscillator
 there are no free variables-the result is dependent
 on the function's formal parameters only--a
 purely functional style with no use of global data.
 This means that time functions can be bound or
 combined independent of the context in which
 they are actually used. In contrast, the ACF defini-
 tion of oscillator has a reference to the free

 variable S (in fact, it can refer to any of the envi-
 ronment variables). Since this variable, in this case
 start-time S, can change depending on the context,
 the expression can likewise yield different results
 in different contexts. This is an imperative style,
 using state and assignment. In ACF, time func-
 tions must be defined in the context where they
 are actually used; one cannot, for example, ab-
 stract from them in one context but use them in
 another. In a functional language, one would ex-
 pect the expression shown in Figure 14a to have
 the same semantics (i.e., graphical output) as those
 shown in Figures 14b and 14c, since it is a prop-
 erty of such a language that a name can only be as-
 sociated with a value once. This property is called
 referential transparency. It is considered a severe

 Figure 14. Musical objects
 parameterized with time
 functions as expressions,
 and their graphical output
 as generated by the mi-
 cro-versions of ACF and
 GTF, respectively (where
 they differ). A sequence of
 two notes separated by a
 rest and its identical out-

 put in both ACF and GTF
 is shown in (a); abstrac-
 tion from the pitch pa-
 rameter and its different
 output in ACF and GTF in
 (b); using local binding
 for the expression in (a)
 and its output in ACF and
 GTF is shown in (c).

 (seq (note (oscillator 62 1 .5) 1 1)
 (pause .5)
 (note (oscillator 62 1 .5) 1.5 i)) -

 64

 62 M

 61

 60

 (a) o i

 (a-musical-object (oscillator 62 1 .5)) -o

 64- 64

 63 63

 62- 62

 61 61

 60- 60

 (b) ACF F 0 GTF (b) 0 2 3 0 1 2 3

 (let ((vibrato (oscillator 62 1 .5)))
 (seq (note vibrato 1 1)

 (pause .5)
 (note vibrato 1.5 1))) =

 64 64

 63 63

 62.62
 61 61

 60- 60o

 (c) 0 1 2 3 0 1 2

 loss when this property does not hold (Stoy 1977);
 for example, we can no longer be certain that f (x) -
 f (x) is zero. Thus, reasoning about such programs
 becomes much harder because the whole mecha-
 nism of reasoning (the lambda calculus) is lost. In
 some cases it is important to drop this property,
 for example, in a non-deterministic programming
 style, but to give it up so early, at the fundamen-
 tals of what could become a basis for a representa-

 Honing 43

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 15. Using a GTF-
 specific language con-
 struct to attach a time

 function to the whole se-
 quence (instead of to each

 individual note) to obtain
 the same result as the ex-

 pression in Figure 14c
 given by ACF.

 Figure 16. Transforming
 the constant pitch of a
 note of duration 1 with a
 linear interpolating ramp,
 resulting in a glissando

 that starts at 64 and ends

 at 63, which produces
 identical output in ACF
 and GTF.

 ; GTF-specific
 (with-attached-gtfs ((vibrato (oscillator 62 1 .5)))

 (seq (note vibrato 1 1)
 (pause .5)
 (note vibrato 1.5 1)))

 64

 63

 62"

 61

 60

 0 GTF
 1 2 3

 (trans (ramp 1 0) (note 63 1 1)) -=

 64

 63

 62

 61

 60

 0 1 2 3

 tional system for music, seems to be a mistake.
 (Note that referential transparency is not a prop-
 erty of Lisp itself, since it combines functional
 with imperative language constructs.)
 Since the ACF systems lack three central as-
 pects of a functional language-a name is only
 once associated with a value (referential transpar-
 ency), functions can be treated as values (first-
 class objects), and there are no side effects-we
 would not consider Arctic, Canon, Fugue, and
 Nyquist to be functional languages.

 Attaching Time Functions to Musical Objects

 Independent of these representation language de-
 sign issues, we sometimes desire the behavior ex-
 hibited by ACF, in the sense that both time
 functions should refer to the same start time, as if
 they were linked to the whole object, instead of
 the individual notes. To do this properly, without
 conflicting with the referentially transparent let
 in Lisp, we need to introduce a new construct that
 is syntactically different. The macro with-at-
 tached-gtfs is an example of a construct provid-
 ing such alternative semantics (see Figure 15 for
 an example) and the micro-version source file for
 the definition. It turns the expression in its body
 into a musical object generator, attaches the time
 functions mentioned to the start time and dura-

 tion of the whole object (instead of using the start
 times and durations of the individual components,
 as is the default case), and communicates these

 "redirected" time functions to the places where
 they were mentioned in the expression.

 With the attach-gtf construct, linking a time
 function's start and duration parameters to musical
 objects or values is generalized, i.e., time functions
 can be linked to any musical object, independent
 time point, or time interval. While the latter two
 situations are supported in ACF, time functions
 cannot be linked to musical objects. This is a sec-
 ond major difference between the two formalisms
 (More examples based on this difference will be
 given below in the section on Flexibility).

 Modularity

 Before we continue the comparison, as an exercise to
 the reader, try to decide whether the following two
 transformations should have a similar or different re-

 sult in ACF and GTF: first, a transposition of a note
 by a declining glissando of a semitone that is then
 made twice as long; and second, a transposition of a
 note with the same declining glissando that was first
 made twice as long. This means, in Lisp, is

 (stretch 2
 (trans (ramp 1 0)

 (note 63 1 1)))

 the same as

 (trans (ramp 1 0)
 (stretch 2

 (note 63 1 1)))?

 44 Computer Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 17. Transforming
 the constant pitch of a
 note of duration 2 with a

 linear interpolating ramp
 yields a different result in
 ACF than in GTF.

 Figure 18. A sequence of
 two notes with different
 duration, separated by a
 rest, whereby each pitch
 attribute is associated

 with the same ramp time
 function. This produces a
 different output in ACF
 than in GTF.

 (trans (ramp 1 0) (note 63 2 1))

 64 64

 63 63

 62 62

 61- 61

 60 60
 ACF GTF
 0 1 2 3 0 1 2 3

 (seq (note (ramp 64 62) 1 1)
 (pause .5)
 (note (ramp 64 62) 1.5 1)) -=

 64 64

 63 63

 62 62

 61 61

 60- 60
 ACF GTF
 0 1 2 3 0 1 2 3

 The answer will be given below. We will first
 look at a simpler sub-example, shown in Figure 16.
 In this case, the pitch of the note is transposed
 with a descending linear ramp, adding values to
 the note's constant pitch. Both ACF and GTF pro-
 duce the same output.
 However, when the note is made twice as long,
 by giving it duration 2, in ACF the shape of the
 ramp does not change, while in GTF it stretches
 along with the note's duration, i.e., the pitch of the
 note still starts at 64 and ends at 63 (see Figure 17).
 This is not a bug, but a fundamental language-
 design decision. The difference in behavior is
 caused by what, again, seems to be a small differ-
 ence in the two time-function definitions. In ACF,
 at define time a time function A(t) is "instanti-
 ated." It has access to the formal parameters of
 ramp and the implicit parameters of the transfor-
 mation environment (S and F; see Equation 5 be-
 low). In GTF (Equation 6), ramp evaluates to a
 function of start time, duration, and time (i.e., A(s,
 d, t)). This definition is independent of the trans-
 formations acting on the objects it might be linked
 to. Note that stretch factor F is not mentioned in

 Equation 6, while it is in Equation 5.

 ACF: ramp(from, to, d) - A (t) from + (to - from) (5)
 Fd

 GTF: ramp(from, to) = A (s, d,t) from + td(to - from) (6)
 d

 Furthermore, in ACF ramp has an extra param-
 eter named duration (d) that must be explicitly
 communicated to the time function, while in
 GTF, in the default case, the time function is

 given the duration of the object that it is used for.
 So, to obtain the same output in ACF as in GTF
 for this example, ramp must be explicitly in-
 formed about the duration of the object it is used
 for (duration is underlined):

 ; ; ; ACF-specific
 (trans (ramp 1 0 2) (note 63 2 1))

 All functions of time in the ACF systems have
 this optional duration parameter (with the default
 being 1.0 sec). However, Arctic (Dannenberg, Mc-
 Avinney, and Rubine 1986) elegantly works around
 this problem by introducing normalized durations-
 all time functions and behaviors must be explicitly
 stretched to obtain the desired duration. Another,
 more elaborate example is shown in Figure 18.
 Here as well, to obtain the same output in ACF

 as in GTF, the durations of the individual notes
 have to be explicitly communicated to every func-
 tion of time (duration is underlined):

 ; ; ; ACF-specific
 (seq (note (ramp 64 62 1) 1 1)

 (pause .5)
 (note (ramp 64 62 1.5) 1.5 1))

 Finally, to come back to the question stated in
 the beginning of this section with regard to the ef-
 fect of the order of applying transformations, Fig-
 ure 19 shows that ACF and GTF give different
 results-for reasons just described.
 The difference of having time functions that can

 be attached to musical objects (like in GTF), and
 time functions that are independent entities and
 are also sensitive to time transformations (as in

 Honing 45

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 19. How order af-
 fects applying a trans
 and stretch transforma-
 tion to a note. Stretching
 a transposed note gives

 the same result in ACF
 and GTF (a); but transpos-
 ing a stretched note gives
 a different result in ACF
 and GTF (b).

 Figure 20. Sequence of
 two notes with a time
 function locally bound to
 the variable glissando,
 and its differing output in
 ACF and GTF.

 (stretch 2 (trans (ramp 1 0) (note 63 1 1))) -

 64

 63

 62

 61

 601

 0 2

 (a)

 (trans (ramp 1 0) (stretch 2 (note 63 1 1))) -

 64 64

 63 63

 62 62

 61 61

 60 60.
 ACF GTF
 o 2 3 1 2 3

 (b)

 ACF), indicates an important difference in modu-
 larity between the two formalisms. In GTF, time
 functions and transformations are orthogonal; the
 definition of one can be changed or extended with-
 out influencing the workings of the other. In ACF,
 time functions and transformations interact (for
 example, time functions are communicated a
 stretch factor-a time-transformation parameter).
 The issue of orthogonality will become crucial
 when the language is extended with, for example,
 time-varying time transformations (i.e., tempo or
 event-shift transformations using timing func-
 tions), because all behaviors must be modified to
 be able to work with these extensions.

 Flexibility

 Next, consider the output of the glissando ex-
 ample in Figure 20. For the same reasons as de-
 scribed for the example in Figure 14c, ACF and
 GTF give different results.

 (let ((glissando (ramp 64 63)))
 (seq (note glissando 1 1)

 (pause .5)

 (note glissando 1.5 1))))

 64 64

 63 63

 62 62

 61 61

 60 60

 0ACF 0GTF 0 1 2 3 0 1 2 3

 However, the point should be made here that
 despite the characteristics of a specific language,
 one sometimes wants to express one and some-
 times the other behavior, i.e., time functions that
 are dependent or independent of musical objects.
 In GTF, the semantics of the ACF example can be
 obtained by defining a linear ramp that is indepen-
 dent of the duration of the object it is attached
 to-an independent-ramp (see Figure 21a).
 But the independent-ramp in GTF is not the
 same as ramp in ACF. It still uses the start time of
 the object to which it is applied. While the time
 function constructor has a fixed decline/incline, it
 always starts at the same value at the object's
 start time (see Figure 21b). This is another behav-
 ior that might be preferable in some musical situa-
 tions.

 Yet another alternative is shown in Figure 21c.
 A ramp is linked here to the whole object, stretch-
 ing along with its duration, such that it always
 starts at 64 and ends at 63.

 The general point is that the issue is not decid-
 ing on correct semantics, but, instead, indicating
 how much flexibility we need to express a multi-
 tude of musically viable situations. Furthermore,
 the examples above make use of very simple time
 functions-without mechanisms to compose new
 time functions from existing ones, they will re-
 main trivial examples. It is essential that we can
 abstract from them, building more musically real-
 istic functions out of simpler ones that are well
 understood. As an example, assume we want to

 46 Computer Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Figure 21. Three GTF-spe-
 cific examples of alterna-
 tive ways to link a time
 function to musical ob-
 jects. Attaching a linear
 ramp with its own inde-
 pendent duration (its
 third argument) to the
 whole sequence (identical
 to the output in ACF for
 the expression shown in
 Figure 20 for ACF) (a); pa-

 rameterizing the indi-
 vidual notes with a ramp
 independent of the dura-
 tion of the object it is
 used for (it starts at 64 for
 every note, but then has a
 fixed decline) (b); and at-
 taching a ramp to the
 whole sequence, resulting
 in a glissando over the en-
 tire object starting at 64
 and ending at 63 (c).

 Figure 22. Output of the
 user-defined function ex-
 ample that links a com-
 posite time function,
 constructed from a ramp
 starting at 64 and ending
 at 63 over the duration of
 the whole sequence, and
 an oscillator attached to

 each individual note (a).

 It displays the correct be-
 havior when stretched as

 a whole: the glissando is
 compressed (but still
 starts at 64 and ends at

 63), while the vibrato
 component drops some
 periods, depending on the
 new durations of the indi-
 vidual notes (b).

 ; GTF-specific
 (with-attached-gtfs

 ((glissando (independent-ramp 64 63 1)))
 (seq (note glissando 1 1)

 (pause .5)
 (note glissando 1.5 1))) =

 64

 62%

 61

 60
 GTF

 (a) 0 1 2 3

 ; GTF-specific
 (let ((glissando (independent-ramp 64 63 1)))

 (seq (note glissando 1 1)
 (pause .5)
 (note glissando 1.5 1))) =

 63

 62

 61

 60

 (b) 0 1 2 3

 ; GTF-specif ic
 (with-attached-gtfs ((glissando (ramp 64 63)))

 (seq (note glissando 1 1)
 (pause .5)
 (note glissando 1.5 1))) -

 64

 63

 62

 61-

 60"

 (C) 0 1 2 3

 (example) -=

 64

 63

 62

 61

 60

 0 1 2 3

 la)

 (stretch .5 (example)) -=

 64-

 63

 62

 61

 (b) 0 1 2 3

 define a time function that embodies glissandi
 with a little vibrato, a simplistic first step in the
 direction of expressing the musical knowledge
 used in singing. This is shown in Figure 22. We
 can compose a glissando with a vibrato by adding
 the results of a ramp that is linked to the whole
 musical object, and an oscillator time function
 that is linked to the individual components of the
 musical object (all this without having to refer to
 the internal structure of a-musical-object).

 ;;; GTF-specific
 (defun example ()

 (with-attached-gtfs ((glissando (ramp 64 63)))
 (let* ((vibrato (oscillator 0 2 .5))

 (pitch (time-fun-+ glissando vibrato)))

 (a-musical-object pitch))))

 Honing 47

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 Programs Versus Data

 In ACF, all behaviors and transformations are pro-
 grams, and the output is generated as a side-effect.
 Functions of time are also, in a sense, behaviors
 that can inspect the transformation environment
 (In Arctic there is indeed no distinction between
 time functions and behaviors; all behaviors are, in
 fact, functions of time). This implies that if one
 wants to add a MIDI play function or a graphical
 extension, all behaviors must be modified-a te-
 dious job in a large-scale system (see Dannenberg,
 Fraley, and Velikonja 1991). In GTF, all objects of
 the language (musical objects, transformations,
 and time functions) are first-class objects, as they
 deliver data structures and can be bound and

 passed as arguments. They can therefore be in-
 spected by other programs or serve as input to
 other systems (for example, graphics- or sound-
 generation systems).

 This data-versus-programs distinction also has
 an important influence on the expressiveness of
 the representation itself. For instance, in the case
 of a language with musical objects as procedures,
 there is no access to these objects after definition.
 This forces all communication from, for example,
 time functions to musical objects and vice versa,
 to be realized at define time. Representation prob-
 lems that can be characterized as based upon "bot-
 tom-up" or "lateral" communication, dependent
 on the accessibility of musical objects after defini-
 tion, cannot be represented in such languages (see
 the "compressor problem" and "transition prob-
 lem" in Desain and Honing 1993).

 Conclusion

 In this study, two formalisms for describing func-
 tions of time were compared using micro-version
 programs as a means to gain insight in their work-
 ings. Although both systems provide a solution to
 the vibrato problem-in that they acknowledge
 the need for more time information besides actual

 time-several important semantic differences were
 indicated. These differences were shown to be in-

 trinsic to the design of the two systems and in the

 way they support notions such as abstraction, flex-
 ibility, and extensibility.

 This article is restricted to the vibrato problem,
 which reflects just a minor aspect of a representa-
 tional system for music. Transformations and mu-
 sical objects-their construction, structuring, and
 use-are not discussed. Other, more pragmatic is-
 sues, including efficiency and real-time possibili-
 ties, are also left untouched. The aim, though, is
 to achieve a true understanding of what seems to
 be irrelevant differences between two relatively
 simple formalisms. This understanding is essen-
 tial, for instance, in choosing a formalism as a fun-
 damental building block of a more elaborate
 representation system for music. Finally, the vi-
 brato problem is a key example of the kind of ex-
 pressive power that we need for the next
 generation of synthesizers that allow high-level
 musical control; for example, synthesis methods
 based on physical models (Smith 1992), or revital-
 ized additive synthesis (Serra and Smith 1990).

 Acknowledgments

 The author wishes to express his special thanks to
 Roger Dannenberg for his open and collaborative
 attitude, providing full access to his systems; the
 article benefited greatly from comments he made
 on earlier versions. Peter Desain is to be thanked

 for helping out at crucial stages of this research
 and for greatly improving its presentation. Also,
 thanks to Huub van Thienen for his detailed com-

 ments on an earlier draft. None of them, of course,
 necessarily subscribes to any of my conclusions.
 Remko Scha and the Computational Linguistics
 Department of the University of Amsterdam are
 thanked for providing the environment in which
 this research could evolve.

 Part of this work benefited from a travel grant
 by Netherlands Organization for Scientific Re-
 search (NWO) while visiting the Center for Com-
 puter Research in Music and Acoustics, Stanford
 University, on kind invitation of Chris Chafe and
 John Chowning. The author's research has been
 made possible by a fellowship of the Royal Nether-
 lands Academy of Arts and Sciences (KNAW).

 48 Computer Music Journal

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

 References

 Abelson, H., and G. Sussman. 1985. Structure and
 Interpretation of Computer Programs. Cambridge,
 Massachusetts: MIT Press.

 Dannenberg, R. B. 1989. "The Canon Score Language."
 Computer Music Journal 13(1).

 Dannenberg, R. B. 1993. "The Implementation of
 Nyquist, A Sound Synthesis Language." Proceedings
 of the 1993 International Computer Music
 Conference. San Francisco: International Computer
 Music Association.

 Dannenberg, R. B., C. L. Fraley, and P. Velikonja. 1991.
 "Fugue: A Functional Language for Sound Synthesis."
 IEEE Computer 24(7).

 Dannenberg, R. B., P. McAvinney, and D. Rubine. 1986.
 "Arctic: A Functional Language for Real-Time
 Systems." Computer Music Journal 10(4).

 De Poli, G., A. Piccialli, and C. Roads, eds. 1991.
 Representations of Musical Signals. Cambridge,
 Massachusetts: MIT Press.

 Desain, P., and H. Honing. 1992a. "Time Functions
 Function Best as Functions of Multiple Times."
 Computer Music Journal 16(2). Reprinted in P.
 Desain and H. Honing 1992b.

 Desain, P., and H. Honing. 1992b. Music, Mind and
 Machine: Studies in Computer Music, Music
 Cognition and Artificial Intelligence. Amsterdam,
 The Netherlands: Thesis Publishers.

 Desain, P., and H. Honing. 1993. "On Continuous
 Musical Control of Discrete Musical Objects."

 Proceedings of the 1993 International Computer
 Music Conference. San Francisco: International
 Computer Music Association.

 Friedman, D. P., M. Wand, and C. T. Haynes. 1992.
 Essentials of Programming Languages. Cambridge,
 Massachusetts: MIT Press.

 Henderson, P. 1980. Functional Programming. Application
 and Implementation. London: Prentice-Hall.

 Honing, H. 1993a. "A Microworld Approach to the
 Formalization of Musical Knowledge." Computers
 and the Humanities 27.

 Honing, H. 1993b. "Issues in the Representation of
 Time and Structure in Music." In I. Cross and I.

 Deliege, eds. "Music and the Cognitive Sciences."
 Contemporary Music Review. London: Harwood
 Press. Pre-printed in P. Desain and H. Honing 1992b.

 Richie, G. D., and F. K. Hanna. 1990. "AM: A Case
 Study in AI Methodology." In D. Partridge and Y.
 Wilks, eds. The Foundations of Artificial
 Intelligence. A Source Book. Cambridge, UK:
 Cambridge University Press.

 Serra, X., and J. O. Smith. 1990. "Spectral Modeling
 Synthesis: A Sound Analysis System Based on a
 Deterministic plus Stochastic Decomposition."
 Computer Music Journal 14(4).

 Smith, J. 0. 1992. "Physical Modeling Using Digital
 Waveguides." Computer Music Journal 16(4).

 Stoy, J. E. 1977. Denotational Semantics: The Scott-
 Strachey Approach to Programming Language
 Theory. Cambridge, Massachusetts: MIT Press.

 Honing 49

This content downloaded from
�������������128.32.10.230 on Sat, 30 Aug 2025 19:02:19 UTC�������������

All use subject to https://about.jstor.org/terms

	Contents
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49

	Issue Table of Contents
	Computer Music Journal, Vol. 19, No. 3 (Autumn, 1995), pp. 1-86
	Front Matter [pp. 2-12]
	About This Issue [p. 1]
	Editor's Notes: Computer Music Instruction for Computer Engineering Students [pp. 4-6]
	Letters
	ZIPI Standard Too Generous with Tractors on the Freeway [pp. 6-7]
	A Child's Garden of Sound File Formats [p. 7]
	General VIDI [pp. 7-8]
	Unique N-ads, or Combinational Rotational Equivalence Classes [p. 8]

	Announcements [pp. 9-10]
	News [p. 11]
	Composition and Performance in the 1990s
	Touched by Machine?: Composition and Performance in the Digital Age [pp. 13-17]

	Synthesis and Transformation
	EIN: A Signal Processing Scratchpad [pp. 18-25]
	An ASIC for Digital Additive Sine-Wave Synthesis [pp. 26-31]

	Music Representation and Scoring
	The Vibrato Problem: Comparing Two Solutions [pp. 32-49]
	Score Following by Temporal Pattern [pp. 50-59]

	Reviews
	Events
	Review: untitled [pp. 60-62]
	Review: untitled [pp. 62-63]
	Review: untitled [pp. 63-64]

	Publications
	Review: untitled [pp. 64-65]

	Recordings
	Review: untitled [pp. 65-66]
	Review: untitled [pp. 66-68]

	Products
	Review: OSC Deck 2 and 8-Track Tool for MacOS-Compatible Computers [pp. 68-69]
	Review: Studer Dyaxis II Multi-Track Production System [pp. 69-70]
	Review: Tascam DA-30 MK II DAT Recorder [pp. 70-72]
	Review: Sonic Foundry Sound Forge Version 3.0 Sample Editing Software for Windows [pp. 72-73]
	Review: Arboretum Systems Hyperprism 1.5 Effect Processing Software for the Macintosh [pp. 73-74]
	Review: Lexicon PCM-80 Digital Effects Processor [pp. 74-75]

	Product Announcements [pp. 76-85]
	Back Matter [pp. 86-86]

