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 Tempo Curves Revisited:
 Hierarchies of
 Performance Fields

 In this article, we present a new view of the still-con-
 troversial phenomenon of musical tempo. Our per-
 spective is guided by the ongoing development of a
 general theory of performance, together with its
 implementation as a performance workstation on the
 NeXTSTEP programming environment (Mazzola
 1993). The main result of this approach is a formal-
 ism for the description of musical performance based
 on local and global hierarchies of particular vector
 fields. These performance fields are superimposed on
 the given musical score as a separate performance
 score and describe the guiding structure of the physi-
 cal performance. As a special and concrete applica-
 tion of this general result, we expose the
 stratification of tempo into hierarchies of local
 tempo curves, connected to each other by systematic
 synchroneity relations. The theoretical material has
 been implemented in the MIDI software Presto ver-
 sion 2.0. This performance and composition tool en-
 abled us to experiment with and to verify the
 practical use of the theoretical constructs. It was
 written in ANSI C by M. Waldvogel et al. and has a
 source code length of 110,000 words. It is available
 on Atari and Macintosh computers.

 What Is Tempo?

 The problem of tempo has many facets, depending
 on the point of view and interest of the investigator.
 Relating to history, we observe two facets. On one
 hand, the concept of tempo, as it is understood in
 classical musicology and as it has been made precise
 and operational by Johannes Mailzel's metronome,
 seems to be a simple matter. It suffices to look up
 the discourse about tempo and agogics in the preten-
 tious and voluminous Neues Handbuch der

 Musikwissenschaft (Danuser 1992). It is based on

 Carl Czerny's Pianoforte Schule (Czerny 1846),
 which was written more than 150 years ago!

 On the other hand, the use of this concept in con-
 temporary performance theory, music psychology, or
 music technology has proved to be something less
 than straightforward. In fact, our verification of
 Czemy's tempo propositions, if taken literally, yields
 a poor, quasi-mechanical performance.

 Desain and Honing (1992b) conclude from their ex-
 periments with tempo deviations and tempo curves
 that the tempo curve "is a dangerous notion, despite
 its widespread use and comfortable description, be-
 cause it lulls the users into the false impression that
 it has a musical or psychological reality. There is no
 abstract tempo curve in the music nor is there a
 mental tempo curve in the head of a performer or lis-
 tener." This conclusion must be emphatically con-
 tradicted. The problem is not the a priori concept of
 tempo curves, but rather its elaboration for realistic
 applications, as demonstrated in this paper.

 In the reductionist, physicalistic perspective of tra-
 ditional electronic music, as documented by Eimert
 and Humpert (1973), tempo is even eliminated in fa-
 vor of a unique time axis measured in milliseconds:
 "Electronic music neither knows tempo nor metro-
 nome marks, but it documents its connections to the
 phenomenon of time by the most precise time indi-
 cations which exist in music." We should stress that

 music has its own symbolic reality beyond physics-
 an essential point in understanding tempo.

 Musicological Definitions of Tempo

 As historically founded and widely adapted by musi-
 cians and musicologists, the tempo or musical speed
 "is equal to the number of [musical] beats in the cho-
 sen [physical] time unit (duration)" (Albersheim
 1974). Since the invention of the metronome by
 Mdilzel in 1813 (Rien 1979), tempo has been mea-
 sured by beats per minute, but it is up to the com-
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 poser or performer to decide on the note value repre-
 sented by the beat. In general, the beat of the metro-
 nome is the denominator of the time signature.

 Here, as with other musicological definitions, we
 are confronted with a frequent phenomenon of musi-
 cological signs: they lack precision, and their mean-
 ing changes according to their current context. For
 example, Albersheim categorically denies the influ-
 ence of a rubato effect on tempo; he views local
 agogics as a psychological fact while tempo remains
 constant!

 We can also observe an unreflected mixture of

 symbolic score time and physical reality. For in-
 stance, the famous Riemann Musik Lexikon defines
 tempo as "absolute duration of note values." This ap-
 proach to tempo has been adapted by Friberg (1991).
 The tempo problem is circumvented by reduction to
 the sequence of note durations, a simplification that
 cannot take the onset relations into account, in par-
 ticular for polyphonic music. The tempo is reduced
 to a function of durations and is hence completely
 abandoned as an autonomous category.

 Such a conceptual ambiguity is only acceptable as
 long as precise signs and relations are not required
 for adequate computerized data processing or for
 analysis in mathematical music theory. Despite their
 inaccurateness, we can learn from the above defini-
 tions that tempo is associated with the relation of
 score time and performance time. On a more formal
 level, tempo can be interpreted as the transformation
 of score time into performance time.

 The Lack of Theory and Software

 General representation languages and theories of mu-
 sical objects-including a theory of time and perfor-
 mance-are still under development and should
 provide a basis for broad acceptance and use in both
 practice and research. As Desain and Honing (1992a)
 state on the representation of musical time and tem-
 poral structure, "We still lack a general theory of rep-
 resentation." From their experiments, these authors
 conclude that there is no chance for any formerly
 known abstract model of time structuring in music
 to gain acceptance.

 A brief look at the tempo handling capabilities of

 today's commercial sequencing software reveals that
 appropriate software for tempo control is also lack-
 ing. Although their terminology is taken from classi-
 cal musicology, time control is mostly based on
 discrete tempo changes. To our knowledge, the edit-
 ing of continuous tempo curves is only available
 with two software products: Presto (by SToA Music)
 and Live (by Soft Arts).

 Although discrete tempo control seems to be com-
 monly used and accepted by certain practicing musi-
 cians, the tempo shaping of these sequencers is not
 satisfactory at all. If the tempo is subjected to dis-
 crete changes, the flow of time, as perceived by the
 listener, is flurried. The analogous perception of hu-
 man beings is directly founded in nature: the sur-
 roundings of humans are, in general, not capable of
 changing states in a discrete manner. From this point
 of view, it doesn't make sense to treat musical time
 as discrete data. As Franz Liszt's teacher states, "A
 sudden slowdown or acceleration during a single
 note wastes the whole issue in this case" (Czerny
 1840)-a remark that is easily verified by computer
 simulation.

 Elementary Tempo Curves

 To get off the ground with our formal discussion, let
 us call the symbolic, musical time E. This is a real
 number measured in units that we will call beats to

 fix the idea. For any concrete performance, we associ-
 ate with the symbolic time E a physical time e, also a
 real number that is measured in seconds, say. Let us
 suppose that the performance transformation p

 E ---e (1)

 is an invertible C' (continuously differentiable) func-
 tion e = p (E). According to the intuitive definition of
 tempo, we define the tempo curve associated with
 the transformation p to be the derivative

 T =(--f [Beats/sec]. (2)
 Suppose that we know the physical time of the

 start time
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 Figure 1. Graphical user in-
 terface for editing tempo
 hierarchies in Presto.

 PRESTO File Block Smmnetries Ornaments Composition Instruments

 UNTITLE Tempo hierarchy

 S l A - HlerarchU Names
 T II.4 A|.81: Master
 0li*********e** *, I Hemtenpocurve

 19 8 8 1 1 1 11 II I1 i i :Hem tempo curve
 " s 8 88888888898

 S..e te...po curve 188.....

 New tempo curye LO8 36

 e0 = o(Eo). (3)
 Then the transformation p is the well-known in-

 tegral

 bp(E) = eo l/ T. (4)
 This easy formula allows any choice of the tempo

 curve as long as it is a positive, continuous function.
 We are not dealing with noncontinuous tempi be-
 cause a more general concept of tempo will allow us
 to circumvent this situation, which we call the case
 of cellular tempo.

 For the standard assumption of a piecewise linear
 (i.e., polygonal) tempo, Equation 4 yields a sum of
 logarithmic functions of symbolic time. This type of
 tempo curve is implemented in the Presto software.
 The user is allowed to define and edit polygonal
 tempo graphically (Figure 1).

 Perfonnrmance Fields

 To make the link with the general approach of our
 theory, we next consider the analogous situation for
 pitch. In this case, we are also given a symbolic pitch
 coordinate H, which will be measured in, for ex-
 ample, half-tone steps. With respect to the wide-
 spread MIDI codex, we give this unit the name Key.
 However, we shall admit real numbers as symbolic
 pitch values. In fact, musical thinking includes the

 infinite division of half-tone steps. Again, for a given
 performance, each symbolic pitch H is transformed
 into a physical pitch (i.e., the logarithm h of fre-
 quency) to be measured in Cents, for example.

 The transformation p

 H -, h
 is again supposed to be induced by an invertible C1
 function h = (H), and the intonation curve S will be
 defined by

 S - [Key/Cent] . (5) SdH)

 If we know the physical pitch ho = p (H0) of sym-
 bolic reference Ho, we have

 p(H)= ho / S. (6) f(6)
 For example, the well-tempered tuning is the con-

 stant intonation curve of value S = 10-2 (Key/Cent).
 Usually, the intonation curve is a periodic function
 with period 12.

 If we put together tempo and intonation curves,
 we get the tempo-intonation vector field TS on the

 real E-H-plane R2 {E, H})

 TS(E,H) = (T(E),S(H)) , (7)
 a continuous vector field on the symbolic plane of
 onset and pitch. By the fundamental theorem of ordi-

 nary differential equations (see Loomis and Steinberg
 1968), there is a unique maximal integral curve

 XTS (8)
 through a given point X = (E, H). Suppose that this
 curve hits an initial point Xo = (Eo, Ho), where its
 physical value xo = (eo, ho) in the e-h-plane is given. If
 this happens in the parameter value -to of the inte-
 gral curve, then we have

 (X) = xo + to - A (9)
 where A = (1, 1) is the basic diagonal vector. This
 means that we may calculate the performance trans-
 formation 6 (X) by direct integration of the tempo-into-
 nation vector field TS, as shown in Figure 2.
 For the following discourse, we suppose that the
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 Figure 2. The combination
 of tempo and intonation
 curves defines a two-di-

 mensional performance
 field.

 smitoneBeats/se- /~H) _____- (,H: T 0

 Beats/sec

 T(E)

 E

 typical parameter set of onset, pitch, loudness, and
 duration for piano music is selected, though more
 general settings are at our disposal in our theory. We
 denote symbolic parameters by capital letters, and
 physical parameters by corresponding small letters. E
 stands for symbolic onset, e for the physical onset,
 and so on. All parameters are real numbers, and the
 corresponding real vector spaces are denoted by R{E,
 H, L, D) in the symbolic case and by R{e, h, 1, d} in
 the physical case, respectively. The notation of par-
 ticular subspaces, such as R{E, H), is evident. For a
 general set II of symbolic parameters, we write RII.
 For the corresponding physical set n, we write R3n.

 From the above analysis of tempo and intonation,
 a more general approach becomes feasible. We shall
 see below that this generality is by no means an aca-
 demic game.

 Suppose that we are given the composition, a finite
 set K of sound events in R{E, H, L, D). Each element
 X E K is transformed into a physical sound event x =
 p (X) by means of a performance transformation

 p:R I-I ---> Rn. (10)
 We now suppose that this transformation is de-

 fined on an open neighborhood U of K and is a C1
 diffeomorphism-that is, an invertible, continuously
 differentiable map onto an open neighborhood V of
 g(K).

 Performance fields are special vector fields that de-
 scribe performance transformations. They perfectly
 generalize the situation studied above for tempo and
 intonation. We consider the diagonal constant vector
 field A on V

 Figure 3. The performance
 transformation from sym-
 bolic to physical reality

 may be described by the
 inverse vector field of the
 diagonal field.

 Symbolic reality Physical reality

 -- diffeomorphism

 h(E,H)

 E e(E,H)
 Performance fie ld xDiagonal field A

 A(x) A = l,...,l) for all x EV.

 By a general technique of differential geometry,
 one may consider the so-called inverse image of the
 A-field, as in Figure 3. This is the C' performance
 field : (Hebrew "TSadeh" for German Tempo-
 Stimmung) on U defined by the formula

 (X) = J(p)-I(X)(A) , 11)
 where A(p) is the Jacobian matrix at X

 J(p)= ( i) :(X). (12) 8Xi Xi-E,H,L,D

 By the fundamental theorem of ordinary differen-
 tial equations, there is a unique maximal integral
 curve

 X f (13)
 through every symbolic sound event X in K. If t is
 the curve parameter, we have

 dfg(t) =-2 -(W) (14) dtx A X

 with the initial value

 Suppose now that the curve hits a symbolic point
 A for the parameter value -to. Then we have the
 straightforward equation

 pX) = p(A)+to A. (16)
 If we know the value of A under the performance

 transformation, the value of X is also known by
 Equation 16. Hence, it suffices to know the perfor-
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 mance field and the performance transformation of
 special points to calculate the values for all points of
 the composition K.

 We now make the assumption that there is a set I
 of symbolic points in U where the initial perfor-
 mance transformation

 S= PIrJ:II -> V (17)
 is known and such that, for every point X in K, the
 integral curve of Equation 13 hits I. We further make
 the compatibility hypothesis that for any two points
 A and B in

 Inf: , (18)
 we have

 I(B) -pIA) =(tB-tAA (19)
 for the parameter values t, and tA of the curve where
 it hits B and A. This prevents ambiguities in the
 choice of reference values in the initial transformation.

 A priori, there are different choices of a reference
 field in V, but the candidate A is a good one because
 it is suggested by the special cases of products of in-
 dependent fields, as with tempo and intonation (see
 above), and by the simple symmetric expression in
 Equation 16 with respect to all parameters.

 Articulation: The Two-Dimensional Case

 Before we explore the general setting, we want to cal-
 culate an elementary default performance field with
 respect to onset and duration. We do not yet impose
 any conditions on articulation, such as legato or stac-
 cato. We only assume that a tempo field is present.
 This performance transformation

 p: RE, D} -> Re, d} (20)

 is defined by the two functions

 e=p(E)=e(E) (21)
 and

 d = ga(E,D) = d(E,D) = e(E + D)- e(E). (22)

 The Jacobian matrix looks like this:

 ae e 1 0
 aE aD _E
 ad ad 1 1 1

 dE aD TE+D TE TE+D

 and the corresponding performance field is

 X(E,D) = (T(E),2T(E + D) - T(E)) . (23)
 For a constant tempo, this is the diagonal tempo

 field, but for a nonconstant tempo, the D-component
 of this field is no longer independent of the E-coordi-
 nate; this means that the default E-D-performance
 field is not a product of two one-dimensional fields
 like the above field TS = TxS.

 However, there is a remarkable feature in this situ-
 ation-it reveals that performance fields tend to
 build hierarchies in the following sense. We have a
 projection

 2(E,D)= T(E) (24)
 of vector fields. This reminds us of the case of

 tempo-intonation fields. But we do not have a projec-
 tion onto the second component; a D-field does not
 exist. In general, one will have an entire system of
 such projections, and this is essential in understand-
 ing the nature of performance and of its defining pa-
 rameters. We call such a system of projections of
 performance fields a performance hierarchy.

 To get an idea of how articulation acts on the de-
 fault hierarchy in Equation 24, suppose that an ar-
 ticulation effect is required by stretching or
 shortening the durations by a factor of cc percent. We

 get an articulation field 2, that relates to the default
 field by a matrix product as follows:

 Xa (E,D) = Qa(E, D)(E, D) , (25)
 where

 1 0

 Qa(E,D) (1- a) T(E + D)
 a T(E) (26)
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 is a 2-by-2 matrix function of the articulation factor a,
 the tempo field T, and the coordinates E and D; in
 other words, the articulation is related to the default
 field by an automorphism of the tangent bundle of R{E,
 D), which locally looks like the matrix Equation 26.

 In particular, the hierarchy of Equation 24 is pre-
 served by the "articulation deformation" induced by
 the automorphism Equation 26

 2o(E,D) ->T(E). (27)
 This setting generalizes to all the articulation con-

 ditions, as they were proposed, for example, by
 Friberg (1991) in collaboration with Sundberg and
 Fryd6n (see Mazzola 1993 for a detailed study of
 these performance fields).

 Performance Cells

 The above formalism suggests a way to consider a
 basic, local structure that defines a performance
 transformation on a given set K of sound events in
 the n-dimensional parameter space REI. We call such
 a structure a performance cell for K. It consists of
 four ingredients: (1) an n-dimensional rectangle R,
 the frame of the performance cell, by definition,

 K C R; (28)

 (2) a continuous vector field 2 on R, the performance
 field of the cell; (3) a subset I c R of initial events
 subjected to the conditions that every maximal inte-
 gral curve that hits I verifies the compatibility hy-
 pothesis of Equation 19 relating to the following
 paragraph 4 and that every maximal integral curve
 through a point of K hits I; and (4) an initial transfor-

 mation o p1:I --- Rt.

 Notice that formula Equation 16 remains valid by
 definition in the sense that it defines a performance
 transformation on K as soon as this composition
 lives in a performance cell.
 We visualize such a cell by a tetrahedron contain-

 ing K as its "kernel" and such that the four vertices

 are the four elements R, 2, I and z. Its edges or faces represent the relations expressed above, as in
 Figure 4. We formally write the symbol

 Figure 4. The local data of
 a musical performance are
 put together in an object
 called a performance cell.

 Its kernel consists of the lo-
 cal score events to be per-
 formed.

 R

 vector field on the frame

 pot hedral subset
 of tIe frame

 function on t
 initial set

 K

 (R ,I, ) (29)
 to denote this cell.

 The Performance Score

 As we have seen, performance cells may build up a
 hierarchy (a cellular hierarchy). We will not go into
 details in this paper (refer to Mazzola 1993), but there
 is one thing that we should discuss in more detail in
 view of the structure of musical time: the local-glo-
 bal nature of performance.

 From the classical notation of tempo, we recognize
 that a global continuous tempo curve is unreason-
 able-if not impossible-for complex scores. For in-
 stance, we may have a time segment that starts from
 a precise Milzel metronome (M.M.) and includes a
 sequence of accelerandi and rallentandi. In classical
 notation, the appearance of the sign istesso tempo
 means that from this moment on, we should return
 to the initial value of the M.M. sign. This effect is a
 discontinuity in tempo.

 But the reality is still more involved; consider an
 ornament like a trill or a grace note. It is evident that
 such a microstructure cannot have the same tempo
 as its context. The tempo of an ornament is a local
 one.

 It is an easy task to imagine many other situations
 in which a single performance cell is not sufficient to
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 describe the real performance. Think of the intona-
 tion specifications, as described by Friberg (1991),
 which depend on whether we are dealing with an as-
 cending or descending melodic line. The result of
 this reflection is that we have to introduce a patch-
 work of performance cells. The definition runs as fol-
 lows:

 Let K be a set of sound events in RH-for example,
 the sounds of a classical (piano) score. A performance
 score for K is a partition

 disjoint

 K- UKi (30)
 i

 together with a family of performance cells

 Ki

 R i, 2i)liI i)(31)
 for the Ki.

 Together with the score, as it is represented in K,
 the performance score constitutes the generating
 structural background to define a concrete perfor-
 mance. Note that, in general, the performance score
 cannot be retraced from the performance by obvious
 ambiguities. In particular, the partition of Equations
 30 and 31 is completely encrypted while performing
 because it is mainly rooted in the analysis of the mu-
 sical work preceding the performance. (See Mazzola
 1992 for an overview of the methodology of analyti-
 cal tools and their role in performance.

 The Local-Global Principle

 We now want to discuss the general principle of
 patching local performance cells to global hierarchies
 on the level of tempo. As a concrete realization of
 this approach, we describe some of the features of
 the sequencer and composition software Presto on
 the level of interactive graphical tempo editing.

 Local Tempi

 For the remainder of this paper, we work mainly on
 the onset space, that is, on R{E) and, correspondingly,

 Figure 5. The performance
 cell for onset time reduces
 to a simple tempo cell. It
 consists of the tempo curve
 on an interval from onset

 A to onset B together with
 the initial values for the
 bordering points of the in-
 terval.

 p (B) - p (A) = IA/T

 T(E)

 R = [A,B] E

 AA B~_B % p-(A)- j(B)

 on R{e}; these spaces will be identified with the set R
 of reals if no confusion is possible. To explain the
 concept of performance cells for the domain of on-
 sets, we require the following data. They define a
 performance cell of onsets or tempo cell (Figure 5):

 The frame of a tempo curve is a real interval R =
 [A, B], A < B, and the onset collection K is as-
 sumed to live in [A, B].

 The performance field 2 is a continuous curve T,
 T(E) > 0 for all E, defined on R.

 The initial set I is the set (A, B} of edge points in R.
 This restriction is made in view of the practical
 scope of the present paper.

 The initial transformation is defined by the se-

 quence (p (A), p(B)).
 We assume that the compatibility condition

 B)-,p lIA) = 1/T (32)
 is fulfilled.

 The physical onset of an element X in K is given by

 A(X) =f 1/T. (33)
 and then setting

 p(X) = p(A) + A(X) . (34)
 Tempo cells are the local framework for tempo.

 The next step is to construct a procedure to generate
 tempo scores-that is, performance scores on the on-
 set level. This means creating a global system of mu-
 tually related local tempi.

 Splitting Performance Cells

 A priori, we now know what a tempo score looks
 like; we give ourselves a partition of the onsets and
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 assign a tempo cell to each of the members of that
 partition. However, this is a fairly abstract procedure
 because, in reality, nobody is willing to produce
 completely independent tempo cells. There are many
 relations governing the creation of a tempo score. To
 explain the general idea, let us briefly digress on the
 so-called splitting technique for performance cells.

 The idea of splitting a performance cell

 K

 for a set K of sound events runs as follows. We first

 split the kernel K into the disjoint union of two sub-
 sets

 K = K1 U K2 (35)

 which is given for some analytical reason. This al-
 lows for the second step: creating a virtual copy of
 the vertices [symbols] of the performance cell

 K K1 K2 __ 1(36)

 (R,,I, o,) ==(R: ,I, ,) (R,,I, ,) (36)
 Third, the first split cell for K1 is left as a mother
 cell, whereas the second cell has changed its param-
 eters such that it becomes a daughter of the mother
 cell. This means that we perform operations

 =) = V(P..zI) )
 on the given cell data. This relation remains alive

 for the sequel; that is, if we change the mother's
 data, the daughter's data will change accordingly un-
 der the W operator.

 Tempo Hierarchies

 Before introducing the P operator for tempo, we
 must define the tempo hierarchies, starting from a

 master tempo cell Co for K0

 Figure 6. The tempo hierar-
 chy consists of tempo cells
 with frames that are either

 disjoint or subframes of
 one other.

 Co

 C 0C2

 - Ci
 - m

 Ko

 (A, BoIT0P0o)pPo 0oBo (37)

 where we ignore the initial set ({A, B0} because it is
 obvious. A daughter C1 of this cell is, by definition,
 a restriction of this cell to a proper subinterval [A1,
 B1] of [AO, B0], together with the subcomposition

 K, = K0 n[A1, B1] (38)
 and the new initial data

 pl(A1) = o0(A1) and 1(B1) = po(B1)
 as they are given by the master tempo. The tempo

 of the daughter is

 T1 = To[[&,qi]. (39)
 Equation 40 defines an inclusion of tempo cells

 Ko

 ([AO, BITo o(AO),p0(BO)
 U (40)

 K1

 ([AI,BI I TI , I1(A1),) I(B1)
 The next tempo cell deduced from the master may

 either be a sister or a daughter C2 of Cl; in the latter

 case, a granddaughter of the master C0.
 If we produce a sister C2, her frame

 [Ao, Bo] [A2, B2 ] (41)
 has to be disjoint from the frame of her sister C1

 [A, B ] n[A2, B2 ] = 0. (42)
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 This condition guarantees that the kernels of these
 sisters have well-defined home frames and therefore
 performance transformations.

 We again take the restriction field

 ToI[4,A ] (43)
 and the initial values

 (P2(A2),P 2 (B2))=((0(A2), 0(B2)) (44)
 for the sister C2 The kernel of the sister is

 K2 = Ko n [A2, B2 ]. (45)

 If a daughter C2 of C1 is produced, we require a
 proper inclusion

 [A1, B,1 ] D[A2,B2] (46)
 and

 (P2 (A2 ), p2 (B2)) = (p1(A2), p (B2 )),
 as well as

 T2 = T1[A,B]. (47)
 This method is repeated to produce an entire hier-

 archy of local tempo cells

 [ K, A, N (48)
 ,([Ai'5 Bi I Ti'api Ai)}'p i Bi})))i-o 9..N

 We impose the above mutually exclusive condi-
 tions of Equations 42 and 46, respectively, and the
 accompanying conditions for each couple of cells of
 this hierarchy. This means that either two frames are
 disjoint or one is a subframe of the other, as illus-
 trated in Figure 6.

 Hence, every point X of the original composition
 Ko is contained in exactly one smallest home cell
 with home index i(X) of X.

 This construction partitions Ko into an evident dis-
 joint union

 disjoint

 Ko= U Li (49)
 j=home index

 of subcompositions according to home cells. Hence,
 every X in Ko has its uniquely determined home cell

 Figure 7. In Presto, a given
 original curve (0) is de-
 formed to a new curve (D)
 by dragging a handle. The

 program corrects the defect
 in duration that is thus

 produced by preserving the
 shape (C).

 O D

 / , / c
 ! ....... . .......

 i

 with home index i = i(X)

 Li

 ([Ai,Bii,p i(Ai),, i(Bi)) (50)
 and we may calculate unambiguously the physical
 time e(X) according to the home cell.

 Operating on Cells of a Tempo Hierarchy

 For the cell of the tempo score (Equation 50), we can
 now do operations T of the following types:

 1. The frame [Ai, Bi], the kernel Li, and the initial

 values p i(Ai), i(Bi) remain unaltered (always as
 a function of the transformation values of the

 immediately dominating mother cell!).

 2. The field Ti may be changed into a new field
 P(Ti ) with the condition

 P1l/l(T) =J 1/ Ti. (51)
 3. The field values at the initial points remain un-

 altered

 T?(A,) = p (T)(A,) (52)
 T(Bi) = (Ti)(Bi).

 This means that the total duration within a cell is

 kept constant, and the tempo curve fits with its con-
 tiguous curves at the border points.

 Conditions 1 and 2 are evident synchronization
 conditions for a daughter with respect to her mother.
 Hence, the operations ' cannot affect the time frame
 given by the mother. This is of great importance be-
 cause it allows for a perfect fitting of the total dura-
 tion of a small, local process-say, a trill or a
 rubato-with respect to the regular pulse of the
 mother tempo. The third condition simply guaran-
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 Figure 8. The original score
 of Czerny's exercise in
 agogics following his fa-
 mous Pianoforte-Schule.

 pII: rcrI I d1iws

 1.in Tempo - "1 " " " " I" 2. in Tempo I un poco I ritenuto I smorzando .
 3. in Tempo I poco accele- I rando ral-) len- tando .
 4. in Tempo molto ri. tar- dando per- dendo .

 tees that local tempi do not jump on the borders of
 their frames.

 It is important to realize that every P-operation on
 a cell immediately changes the parameters of its
 daughters, granddaughters, and so on. Splitting is re-
 ally a method to organize the influence of an opera-
 tor W on the entire family of the actual cell!

 Operations for Presto

 In principle, a wide variety of curves and operations
 on curves may be considered (see Mazzola 1993 for a
 broader discussion, including splines). In view of the
 following concrete examples, we want to restrict to
 the '-operations for Presto. In Presto, tempo has the
 shape of positive, polygonal curves. Suppose that we
 are given a cell

 Li(53)
 ([A,Bi Tii(Ai),2pi(Bi) (53 There are two mouse-driven methods for influenc-

 ing the tempo curve (Figure 7). The user can intro-
 duce a new knot by clicking anywhere except on the
 abscissas of existing knots. The neighboring knots
 will automatically be connected to the new knot. Al-
 ternatively, the user can drag an existing knot of the
 polygon to another position. The connecting straight
 lines will follow the movement like rubber bands.

 In general, such a new curve will not fulfill condi-
 tion 2 above. The program now tries to deform this
 nonsynchronous curve in order to recover the origi-
 nal time conditions in a three-step approximation
 procedure. It is essential that the shape of the new
 curve is conserved as far as possible. This supports
 the user's intention to deform the old curve in a cer-
 tain direction-though ignoring the defects of syn-
 chroneity that the user will produce as a side effect.

 Figure 9. Translation of the
 four proposed agogical
 variants of Czerny's exer-

 cise into tempo curves
 (M.M. = quarters per
 minute).

 [M.M]

 90

 100 ............

 Example 4 Br

 60

 1. Bar 2. Bar 3. Bar 4. Bar End

 Of course, this type of interactive definition of the

 operator T is very useful for the working musician,
 but it lacks theoretical background in the sense of
 performance rules, as they are discussed in Friberg
 1991. However, our primary goal was to build an ex-
 perimental tool for testing the efficiency of the theo-
 retical machinery in a classical situation.

 Two Examples: Czerny and Chopin

 In this section, we present and discuss two concrete
 musical examples from classical piano literature.
 The first is taken from the famous Pianoforte-Schule
 by Carl Czemy; the second is a portion of two bars
 from the Impromptu op. 29 in A-flat major by
 Fr6deric Chopin.
 Technically, Presto allows the user to enter musi-

 cal data via common MIDI sequencing or graphical
 input. The material is saved in Presto format or in
 standard MIDI-file format. Presto format stores sym-
 bolic onset, duration, loudness, and pitch as well as
 MIDI channel, program change, and MIDI control-
 lers, together with the complete data of tempo hier-
 archies. Tempo hierarchies may be defined
 independently for arbitrary sets of voices. In contrast
 to the MIDI format, this format represents simulta-
 neously the classical score events (symbolic param-
 eters) and the performance-oriented tempo score.
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 Figure 10. Tempo hierarchy
 of more human agogics
 for the Czerny example
 (Figure 8).

 Figure 11. Two bars of
 Chopin's Impromptu op.
 29, containing trills and
 arpeggios.

 Figure 12. Tempo hierarchy
 for the Chopin example
 (Figure 11).

 mother = left hand

 first daughter = melody line - second daughter = alto voice - synchronized
 each bar with

 rubato light arpeggio mother

 Figure 10.

 SFigure. 11.

 Czerny: Verification of Classical Tempo Rules via
 Computer Software

 Czemy's Pianoforte-Schule, written about 1840,
 seems to be an excellent example for applying tempo
 curves in a classical context. Still used in the educa-

 tion of professional pianists and respected by musi-
 cologists, Czemy's pedagogical works are believed to
 be most precise in terms of performance rules, at
 least with respect to the composition style of his
 time.

 In regard to performance fields, we consider this
 example as a verification of classical tempo rules by
 use of adequate software.
 To get an impression of Czemy's ideas of ideal per-

 formance, we have translated the score and its com-
 ments from the example discussed in Danuser (1992,
 p. 295), shown in Figure 8, as faithfully as possible
 into computer data in Presto format. While accom-
 plishing this task, we encountered some difficulties
 that reveal the vagueness of the author's descrip-
 tions. For instance, Czemy doesn't write down ini-
 tial tempo in terms of Mdilzel's metronome (although
 he could have done so), but instead requires the
 amount of tempo change to be "less than 1/6 to 1/5."
 Following Czemy's instructions, we got four differ-

 mother

 arp.-daughter - trill-daughter synchronized each
 Shalf bar with mother

 synchronized each

 arp.-granddaugther quarter bar with
 daughter

 mother I

 trill-daught-r

 * , arp.-daught ,

 Sarp.-gr nddaugther 6 1 _ ...1 ...

 ent tempo curves, as shown in Figure 9. The first is a
 mechanical performance with the advice to play the
 phrase with constant tempo. The second is a
 ritardando that begins at the end of the first bar. In
 the third example, Czemy proposes an accelerando in
 the second bar, followed by a decreasing ritardando in
 the third and fourth bars. In the last performance sug-
 gestion, there is an increasing ritardando from the
 second bar, leading to a perdendo effect.
 According to Czemy, the third performance propo-

 sition is the most suitable for the phrase at hand. Af-
 ter listening to the four versions, we came to the
 same conclusion as Czemy, but we also noticed a
 frightening sterility in all four examples. As long as
 all voices of the piece are tied to the same perfor-
 mance cell, its oversimplified tempo structure
 doesn't relieve computer performance from the feel-
 ing of a machine at work.
 What we need here are ramified hierarchies of

 tempo curves to enable different voices-especially
 for the left and right hand in piano music-to have
 their own tempo shaping. Although Czemy was
 aware of the possibilities given by the independency
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 of left- and right-hand tempo, he did not refer to it in
 the above examples.

 By introducing a simple tempo relation of a
 mother curve for the chords in the left hand as a con-

 ductor of two independent daughter curves--one for
 the melody line in the right hand and one for the alto
 voice in the left hand-we gain flexibility in tempo
 shaping. This flexibility is used to amplify the expo-
 sition and articulation of the musical structure.

 The conditional temporal independency of the
 melody voice enables us to create a local tempo
 curve simulating such characteristics of a human
 performer as "leap-gap" and "faster-uphill"--charac-
 teristics shown in the psychoacoustic studies of
 Friberg, Sundberg, and collaborators-leading to a
 musically more satisfying result. The melody daugh-
 ter curve of the right hand and its conducting mother
 curve are shown in Figure 10.

 Chopin: Investigation of Tempo Hierarchies

 To further explore the possibilities of multiple
 tempo curves, we decided to use a two-bar excerpt of
 Chopin's Impromptu op. 29 as a playground. This
 short phrase has a rather implicit notation and uses
 many productive signs-that is, signs that invoke
 improvisation, such as trills. The score is shown in
 Figure 11.

 All of these musical signs call for a deformation of
 the generic performance score with respect to time.
 Besides the trills, which always have their own local
 tempo curve, the text contains arpeggios and grace
 notes that introduce local variations of the global
 tempo curve.

 To achieve a more natural-sounding performance,
 we used a twofold branched hierarchy, as shown in
 Figure 12.

 The mother curve can be understood as the con-

 ductor of the right hand trill daughter and the left
 hand arpeggio daughter, which itself is the conductor
 of its subordinate apreggio granddaughter.

 The description of the relations among tempo
 curves in terms of family relations is used by
 Albersheim (1974). He compares the musical time
 variation called bound rubato to a walk of father and
 son. Compared to the father, the son has a smaller

 stride and less constant speed; now and then, he has
 to catch up with his father's faster pace.

 With this rather simple, yet new, possibility of
 tempo curve hierarchies, a wide range of time struc-
 tures becomes attainable. Highly complex time dis-
 placements can be achieved even by a tempo
 hierarchy that is not greatly branched, like the one
 used, without touching one single note's structural
 parameters, that is, its onset time and duration.

 Conclusions

 The discrimination of the reality of symbolic score
 data from the physical reality is crucial to capture
 and properly understand the complexity and the pro-
 cess-like nature of musical performance.

 Performance fields are neither a mathematical

 game nor a mere academic approach to the problem
 of performance. Given the possibility of local and
 global stratification, they operate as a performance
 score and form an adequate representation of the for-
 mal structure underlying an actual performance.

 The wide variation of individually perceived time
 is a well-known fact. Time layers are a quite natural
 and common phenomenon in the human perception
 of the world. The splitting and layering of time in the
 form of tempo hierarchies prove to be equivalent to
 the thinking of performers.

 A software package for the realization of and experi-
 mentation with such tempo hierarchies is available.

 Demo Version and Music Examples

 The aforementioned musical examples are available
 via NeXT-mail from gbm@presto.pr.net.ch along with
 a demo version of Presto to allow interested individu-

 als to experiment with the abilities of tempo curve hi-
 erarchies and to examine the presented material.
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