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 Expressive Timing and Dynamics in Real and Artificial
 Musical Performances: Using an Algorithm as an

 Analytical Tool

 W. LUKE WINDSOR & ERIC F. CLARKE

 University of Sheffield

 This paper compares timing and key-velocity data collected from a skilled
 performance of Schubert's Gl>-major Impromptu (Opus 90) with a num-
 ber of performances generated by a version of a musical expression algo-
 rithm proposed by Todd (1992). Regression analysis is used to demon-
 strate both the shortcomings of this model as a complete explanation of
 musical expression and how it might be more successfully used as a tool
 for analyzing data from real performances. Used in this second manner,
 the algorithm is shown to provide a general expressive baseline against
 which other aspects of expression may be highlighted. It is also suggested
 that such a baseline provides a method of decomposing performances
 into continuous and discrete forms of expression. It is concluded that
 using algorithmic models as heuristic tools, rather than as explanations
 in themselves, may better serve our increased understanding of the flex-
 ible and multiple nature of musical expression.

 Introduction

 In the literature on musical performance that chooses to view perfor-
 mance empirically or systematically, the term musical expression has be-
 come synonymous with those strategies used by musicians to shape their
 performances. Changes in instantaneous tempo or dynamic level; inflec-
 tions of pitch; vibrato; and overlap or separation of successive events (ar-
 ticulation) can all be regarded as contributing to such musical expression.
 In this paper, we focus on two types of musical expression, expressive tim-
 ing and dynamics, and on expert performance at the piano. There is a gen-
 eral background of research that is aimed specifically at expression in ex-
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 128 W. Luke Windsor & Eric F. Clarke

 pert piano performance, and there exists a systematic model that attempts
 to explain expressive dynamics and timing (Todd, 1992) that will be as-
 sessed in detail in this paper. Moreover, it is relatively easy to measure the
 force with which piano keys are struck, which gives an index of dynamic
 level, and the times at which keys are depressed, as opposed to measuring
 the onset times and dynamic levels of acoustic events.
 Overall, in this study, we sought to evaluate certain theoretical ideas

 developed to explain the moment-to-moment changes in dynamic level and
 tempo (N.B., all references to tempo in this paper are to instantaneous
 tempo, not to global tempo) that may be observed in expert piano perfor-
 mance. We seek to evaluate these ideas in two ways. First, we aim to evalu-
 ate the capacity of a particular computational model (Todd, 1992) to mimic
 a human performance. Second, and more importantly, we aim to use this
 model as a heuristic tool that might help identify and characterize particu-
 lar expressive strategies in piano performance. The distinction between these
 two aims is important. Although it may be the case that a model of expres-
 sion may fail to produce "human" results (i.e., fail a musical version of the
 Turing test), this does not mean that the model is of no value in explaining
 how musical expression is organized. Indeed, if a model in some way in-
 stantiates theoretical assumptions derived from observations of musical
 performance, it may allow not only a direct test of these assumptions as
 expressed in a set of rules, but may also point to modification of those
 assumptions through analysis of the model's shortcomings. Moreover, as is
 the case in this study, it can be accepted that a model may be incomplete,
 yet offer a partially accurate explanation of a phenomenon. By carefully
 analyzing such a model's failures, it may be possible to determine where
 our understanding of a complex phenomenon such as musical expression
 falls short.

 Systematic Approaches to Musical Expression

 To most musicians, the notion that dynamics and timing are used ex-
 pressively would be obvious. Rubato, stress, contrast, and the like are all
 terms used by musicians to describe these kinds of expression. However,
 any suggestion that such expression is systematic would run the risk of
 ridicule. The score, whether through explicit instructions, or implicitly,
 through interpretation of ideological, emotional, or structural "content,"
 might be seen as a source for a performer's expression, but this is not the
 same as admitting that such links are systematic. The notion that expres-
 sion might be rule-based does not seem to match up with performers' expe-
 riences. However, considerable effort has been expended in attempting to
 show how musical performances share systematic patterns of timing and
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 Expressive Timing and Dynamics in Musical Performances 129

 dynamics, both between and within different performers' executions of the
 same pieces, and that the source of such musical expression lies within the
 structure of the music that is played (see, e.g., Clarke, 1988). Before an
 evaluation of any single example of such research, it is important to review
 the way in which such a view of musical expression has arisen. The evi-
 dence that has led to such a view has come from three sources: measure-

 ment of performances, models of performance, and experimental tests of
 such theories of expression. Since such experimental work is not a primary
 concern of this paper, the following discussion will focus on measurement
 and modeling approaches.

 Direct measurement of the timing of the events in piano performance,
 and more recently the dynamic levels of these events, either directly as
 amplitude, or indirectly as the force of key depression, has resulted in a
 number of general observations. Since the work of Seashore (1938), the
 discovery that pianists intentionally and systematically (although not nec-
 essarily consciously) deviate from notated durations has been refined to
 suggest that such deviations from the score are systematically related to the
 structure of the music being played. For example, quantitative analyses of
 the timing of piano performances clearly identify the ways in which the
 metrical structure of a piece is "expressed" through systematic patterns of
 timing (e.g., Shaffer, Clarke, & Todd, 1985; Shaffer & Todd, 1987). Simi-
 larly, the grouping structure, or phrase structure, of a piece can be shown
 to correspond to systematic changes in instantaneous tempo (Gabrielsson,
 1987; Repp, 1990; 1992; Shaffer & Todd, 1987) and dynamics (Gabrielsson,
 1987; Todd, 1992). In this study, we focus on grouping structure (a hierar-
 chy of phrases) to the exclusion of metrical structure (a hierarchy of beats
 and bars). The precise nature of these patterns of timing and dynamics and
 their relationship to each other, and to grouping structure, will be returned
 to later during a discussion of the computational model used here.

 A number of different approaches have been taken to computational
 modeling of musical expression. For example, Sundberg and coworkers
 (see, e.g., Sundberg, 1988) have used a system of rules derived from, among
 other sources, the insights of musical performers. The rationale here is to
 assess the veracity of such intuitions by instantiating them as rules within
 an algorithm that can produce artificial performances whose acceptability
 can be assessed. A second approach is that of Clynes (1983): here, a com-
 plete theory of expression is instantiated in a model, rather than a set of
 largely independent rules. This paper is concerned with a third type of
 model, one that instantiates a theory of expression in algorithmic form,
 but one in which the theoretical basis for the algorithm is grounded in
 observations from human performances. Todd (1985, 1989, 1992) has pro-
 posed three such models, each of which draws on empirical data gathered
 from expert piano performances. The potential advantages of such a model
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 are not only that it provides a method of assessing the theoretical assump-
 tions on which it is based, but also that these theoretical assumptions are
 based on data from actual performances. Moreover, it has potential advan-
 tages over a piece-meal analysis-by-synthesis approach (e.g., Sundberg, 1988)
 where interactions between different rules make it difficult to predict the
 consequences of changing aspects of the model.

 The Todd (1992) Model of Musical Expression

 The model with which we are directly concerned (Todd, 1992; also see
 Todd, 1985 and 1989 for descriptions of related earlier models) can be
 thought of as an instantiation of two aspects of what can be termed a
 "generative" approach to musical expression (see, e.g., Clarke, 1988). The
 first of these is a general characteristic of generative approaches to perfor-
 mance: a rule system maps structural features of the musical score onto
 expressive parameters in the performance. The second is its attempt to model
 a particular kind of mapping between grouping structure (i.e., of the kind
 proposed by Lerdahl and Jackendoff, 1983) on the one hand, and timing
 and dynamics on the other, in a manner suggested by empirical observa-
 tions. Shaffer and Todd (1987; also Todd, 1985; Repp, 1990, 1992) have
 observed a tendency for performers to increase tempo toward the middle
 of phrases and decrease tempo toward the endpoints. Tempi seem to reach
 a minimum at phrase boundaries and a maximum between phrase bound-
 aries. It has also been suggested (Todd, 1992) that dynamic levels seem to
 be in direct proportion to tempo: players tend to play quietest at phrase
 boundaries and loudest between them (Gabrielsson, 1987).
 In his model, Todd (1992) proposes that a single hierarchical grouping

 structure should directly specify the moment-to-moment durations and
 dynamics of each event in such a way as to mimic the kind of behavior
 described earlier. At each level of the hierarchy, dynamics and tempo in-
 crease to a maximum mid phrase and decrease to a minimum at phrase
 end. An additive function between levels means that the fastest and loudest

 points in the "performance" will be in the middle of the phrase at the
 highest level of the hierarchy. Between maximum and minimum values, the
 model plots intermediate events along a curve. Todd justifies the direct link
 between tempo and dynamics by analogy with a physical system (such as a
 hammer/string interaction) where tempo change becomes acceleration, dy-
 namics become energy (intensity), and intensity is proportional to the square
 of velocity (see Todd, 1992, for a fuller description of the function underly-
 ing these curves). His justification for assuming that tempo change is analo-
 gous to acceleration comes from empirical study of accelerandi and
 ritardandi in actual performances (Kronman & Sundberg, 1987) and the
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 Expressive Timing and Dynamics in Musical Performances 131

 qualitative assessment of different synthetic tempo functions by Longuet-
 Higgins and Lisle (1989). Todd has also claimed that this direct link be-
 tween tempo and dynamics via physical motion may have a physiological
 basis (Todd, 1992, p. 3549). Because of the model's insistence that timing
 and dynamics share a single mathematical function, the interonset inter-
 vals between events and their intensity will always be positively correlated
 (instantaneous tempo, of course, will be negatively correlated with inten-
 sity).

 The user of the algorithm as implemented here, in addition to choosing
 an input structure, which corresponds to a hierarchical grouping structure
 (a la Lerdahl & Jackendoff, 1983), also defines the maximum and mini-
 mum duration of the underlying pulse in the performance (the upper and
 lower bounds of its tempo) and the maximum and minimum dynamic lev-
 els and can choose to weight the proportion of "expression" that is as-
 signed to each level of the phrase structure: the "level weights." Such weight-
 ing does not affect the overall changes in tempo and dynamics, a proportional
 decrease occurring at the other levels. For example, in a grouping structure
 hierarchy with only two levels, the subordinate, or lower, level of the hier-
 archy might be assigned a weighting of 2, the superordinate, or higher with
 a weighting of 1: in this case, the higher level would relate to the lower in a
 ratio of 1:2. The level weightings are assumed to be identical for both tim-
 ing and dynamics, in order to maintain the simple relationship between
 expression and structure. Moreover, the distribution of expression between
 groups, regardless of level weightings, is such that the expression assigned
 to groups at the same level of the phrase hierarchy will maintain equality.
 The output of the model takes the form of a text stream of onset times in
 milliseconds and Musical Instrument Digital Interface (MIDI) key-velocity
 values. The model will be returned to in more detail after the rationale for

 the present study is outlined and data from the skilled performance with
 which the model output is to be compared are presented.

 Rationale

 This study has three specific aims. First, it aims to assess the theoretical
 assumptions about timing and dynamics that the model (Todd, 1992) in-
 stantiates. These assumptions can be briefly summarized as follows:

 1. Performers play slowly and quietly at the beginnings and ends of
 phrases and increase tempo and dynamics toward the middle of
 a phrase.

 2. Performers' expressive timing and dynamics are linked to the
 hierarchical nature of phrase structure such that the slowest and
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 132 W. Luke Windsor & Eric F. Clarke

 quietest points in a piece will be the events that begin and end
 phrases at the highest level in the hierarchy.

 3. These changes in expressive dynamics and tempo are generated
 by the same mechanism and follow the same patterns of increase
 and decrease.

 To achieve this goal, the output of the model for a simple and relatively
 unambiguous phrase structure will be compared with the timing and dy-
 namics of a human performance of the same structure.

 Second, we aim to gain insight into which levels of a grouping structure
 might be assigned most importance by a human performer. Because the
 algorithm allows for adjustment of the weighting of different levels of the
 phrase hierarchy's contributions to expression, attempts to match the algo-
 rithmic output with a human performance afford an opportunity to ascer-
 tain which levels of a phrase hierarchy are given most expressive weight.

 It is not our intention in this paper, however, merely to examine the
 success of the algorithm in predicting the dynamics and timing of a human
 performance. As a model of performance, it already instantiates theoretical
 principles well supported by empirical data. Hence, some degree of corre-
 spondence between the algorithm's output and the timing and dynamics of
 a human performance might be expected. This study's third aim is to use
 comparison of the algorithm with human performance as a method for
 highlighting those aspects of expressive dynamics and timing which the
 algorithm fails to model. The model represents only the relationship be-
 tween phrase structure and expression, no other aspect of musical struc-
 ture (metrical, harmonic, voice-leading, motivic) that might generate pat-
 terns of timing and dynamics is explicitly modeled, and it leaves out dynamic
 differentiation between voices in the musical texture and discrete, rather
 than continuous, dynamic and timing changes, such as durational or dy-
 namic accents. Moreover, the model assumes that the links between struc-
 ture and expression, being rather directly specified, are not open to con-
 scious or unconscious suppression or exaggeration, hence such strategies
 may also become highlighted by the model's regularity.

 It should also be added here that a more basic theoretical question can
 be addressed by directly comparing single human performances with those
 produced by an algorithm based on such a simplistic, yet empirically sup-
 ported, theory of expression. If two performances, one human and one
 algorithmic, are generated from a relatively unambiguous representation
 of musical structure and are generated by the same generalized rules for
 mapping structure onto expressive timing and dynamics, then differences
 between these performances may tell us something about more idiosyn-
 cratic aspects of expressive timing and dynamics, aspects that may be based
 on musical structure, yet far less directly specified by a system of rules.
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 Expressive Timing and Dynamics in Musical Performances 133

 Moreover, it is admitted that the sources of expression may be found out-
 side the score's abstract musical structure, in the ideologies of performance
 practice, in attempts to convey emotional or conceptual content, in the
 desire to challenge accepted norms of performance, or on a more mundane
 level, in attempts to deal with particular performance circumstances, such
 as a coping with a particularly reverberant performance space, or unfamil-
 iar piano (see, e.g., Clarke, 1988). The algorithm used here cannot directly
 know anything about these aspects of music making, and by dint of this
 omission may provide evidence of their contributions to expressive dynam-
 ics and timing.

 Using an algorithmic performance as a baseline in this way, to identify
 individual, rather than commonplace, expressive strategies, can be seen as
 complementary to the methods developed by Repp (1995), who uses an
 averaged performance as a similar baseline. Our approach is in a sense less
 sensitive to idiosyncrasies per se, because they might become confounded
 with other features that the model fails to capture. However, the approach
 taken here does enable one to quantify the extent to which a single perfor-
 mance differs from a baseline, without the necessity of collecting multiple
 performances. The model, based as it is on multiple observations, already
 represents a kind of average performance.

 Finally, it should be noted that this study is in no way an exhaustive
 exploration of the model's success in capturing aspects of human musical
 performance. For this to occur, either a substantial number of different
 human performances would have to be compared with the model, or data
 would have to be gathered about the model's aesthetic and/or communica-
 tive evaluation by listeners. Preliminary findings from the second of these
 alternatives were the subject of a separate perceptual study, which demon-
 strated that although the algorithm may communicate alternative group-
 ing structures for the same melody extremely well, sometimes better than
 skilled performers, such communicative performances are not necessarily
 the most aesthetically pleasing (Clarke & Windsor, 1996).

 The Human Performances

 The timing and dynamic data for this study were collected from a skilled
 professional piano soloist henceforth known as HP. HP is regarded as a
 specialist in the music of Beethoven and the classical and romantic reper-
 tory in general and both performs and records regularly. HP was twice
 asked to play the first 16 bars of Schubert's G>-major Impromptu, opus 90
 (see Appendix for the score of this extract), as if the last of these bars was
 the "end of the piece." He was then asked to play the piece again, but in a
 "restrained" manner. This latter performance was collected not as a sup-
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 134 W. Luke Windsor & Eric F. Clarke

 posedly expressionless performance, but rather as a contrasting performance
 that might be slightly "blander" than the two unconstrained performances.
 HP was provided with the score a short while before the requested perfor-
 mances, and he reported that he knew the piece quite well, but had not
 performed the piece in public for some time. The only other explicit in-
 struction provided was that dynamics and timing were the parameters we
 were most interested in. HP reported no difficulty with these conditions
 and seemed at ease with the performance conditions. The performances
 occurred in a practice room, played on a Yamaha Disklavier upright piano
 connected to a Macintosh Ilfx computer via MIDI. The performances were
 recorded using Opcode's Vision sequencer package and stored on hard disk
 as standard MIDI files. After his performances had been recorded, HP was
 asked to comment on the phrase structure of the music played with refer-
 ence to the score: the analysis offered corresponded well to that which
 would later form the input structure for the algorithm (shown in Figure 1).
 Of the two "spontaneous performances," HP suggested that the second
 was a better attempt.

 The standard MIDI files thus obtained were converted into text files

 listing interonset intervals between each triplet-quaver onset and the MIDI
 key velocities of each of these events as a decimal fraction where 1 = maxi-
 mum key velocity (127 in MIDI) using the POCO environment designed by
 Desain and Honing (see Honing, 1990). Where alternative onsets were avail-
 able at the same score position, the highest note in the chord was taken.
 Regression analyses showed typical consistency across performances (see
 Clarke, 1982; Clynes and Walker, 1982; Shaffer, 1981; Shaffer and Todd,
 1987): regressing the interonset intervals of the two spontaneous perfor-
 mances gave jR2= .848, df= 381, p < .0001; regressing the first spontane-
 ous performances against the restrained performance gave R2 = .626, df =
 381, p < .0001. Analyzing the same pairs of the performances but taking
 key velocities as the variables gave R2 = .719, df= 381, p < .0001, and R2 =
 .736, df- 382, p < .0001 (the corresponding correlations were all positive
 and significant at p < .0001). As might be expected, the two spontaneous
 performances are more highly correlated with each other than with the
 restrained performance in terms of timing, demonstrating that HP was able
 to produce consistent performances of the extract, but also to change his
 interpretation according to differing instructions. It should also be noted
 that, in agreement with Repp (1995, 1996), the dynamic regressions are
 slightly lower than those for timing, suggesting that timing may be more
 reliably preserved over multiple performances of the same piece.

 Because the two spontaneous performances are so highly correlated, it
 was decided that this was sufficient justification for focusing the subse-
 quent matching with the algorithm output on the second spontaneous per-
 formance, HP2. The first spontaneous performance and the restrained per-
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 Expressive Timing and Dynamics in Musical Performances 135

 formance allow differing criteria of acceptability for an algorithm perfor-
 mance to be derived. Following Todd (1992), this criterion is simply that
 an algorithmic performance should, when regressed against the real perfor-
 mance, account for as much variance as when a repeat performance from
 the same player is regressed against this real performance.

 The Algorithmic Performances

 The algorithmic performances were produced by using a LISP imple-
 mentation of the Todd (1992) model of musical expression running on a
 Macintosh Ilfx computer. The maximum and minimum dynamic levels and
 durations of the triplet quaver pulse of the structure were .6 and .3, 200
 and 100 milliseconds. These values were chosen before data were collected
 from HP, as was the input structure shown in Figure 1. The 16 bars of the
 extract were hierarchically divided into groups down to the half-bar level.
 Each group was subdivided into two equal-sized subordinate groups. This
 grouping could be regarded as overly regular, but had the advantage of
 producing a simple pattern of expression with no overlapping phrase bound-
 aries. Similarly, the choice of a piece with an isochronous base level of
 rhythmic activity gives a simple and clear representation of instantaneous
 tempo if one plots interonset times against score position in triplet quavers.
 An example of the output is shown in Figure 2. This example was obtained
 with neutral level weightings: henceforth this algorithmic performance will
 be referred to as AP (1, 1, 1, 1, 1) with each numerical value between the
 parentheses representing in decreasing order the weighting assigned to each

 Fig. 1. A schematic illustrating the hierarchical structural representation that the model
 used as an input structure.
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 136 W. Luke Windsor & Eric F. Clarke

 Fig. 2. A line plot showing interonset times in seconds and key-velocity values as a decimal
 fraction against score position in triplet quavers for the algorithm with all level weightings
 set to 1 .

 level of the structure from highest to lowest, and AP denoting an algorith-
 mic performance. The basic form of the model output is clear: the duration
 of the triplet quavers increases toward phrase boundaries and decreases
 toward the middle of each phrase. In other words, tempo increases and
 reaches a maximum mid phrase. The direct links between tempo and dy-
 namics and the links between these parameters and the input structure are
 plain.

 Comparisons of Algorithm Output with the Human Performance

 In the first instance, six algorithmic performances were generated from
 the same input structure and with the same range settings for dynamics and
 timing. Five of these algorithmic performances each assigned a double
 weighting to one level of the input structure, the sixth being the AP (1, 1, 1,
 1,1) performance just illustrated. In this way, it was possible to assess
 whether accentuating the contribution of any particular level in the phrase
 structure to the expressive timing and dynamics obtained a better match
 with the human performance HP2. The complete set of level weightings
 were therefore as follows: (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), (1, 1, 1, 2, 1), (1, 1,

This content downloaded from 
�������������128.32.10.230 on Thu, 21 Aug 2025 00:44:55 UTC������������� 

All use subject to https://about.jstor.org/terms



 Expressive Timing and Dynamics in Musical Performances 137

 2, 1, 1), (1, 2, 1, 1, 1) and (2, 1, 1, 1, 1). Figure 3 shows the six versions of
 the output, illustrating the effect of adjusting the level weightings in this
 systematic fashion. Twelve separate regression analyses were performed,
 between the key velocities (six regressions) and interonset intervals (six
 regressions) of each algorithm version and HP2. All were positively corre-
 lated and significant at the .0001 significance level, but none approached
 the variance accounted for by regressing HP2 against the other human per-

 Fig. 3. A line plot showing interonset times in seconds and key-velocity values as a decimal
 fraction against score position in triplet quavers for the algorithm at six different level
 weightings. The level weightings are positioned as follows: on the left side from top to
 bottom (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), and (1, 1, 1, 2, 1); on the right (1, 1, 2, 1, 1), (1, 2, 1,
 1,1), and (2, 1,1, 1,1).
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 Table 1

 Summary of Regression Analyses

 Value of R2

 Algorithmic Performance Timing Dynamics

 AP (1, 1, 1, 1, 1) .299 .086
 AP(1, 1, 1, 1,2) .375 .054
 AP (1,1, 1,2,1) .321 .041*
 AP (1,1, 2, 1,1) .235 .126
 AP(1,2, 1, 1, 1) .258 .107
 AP(2, 1, 1, 1, 1) .217 .089

 * Despite the low values of R2> these regressions are all signifi-
 cant at the .0001 level: e.g. R2 = .041, df= 382, p = .000006701.

 formances. Table 1 shows the values of R2 for each of these algorithmic
 performances regressed against HP2. Note that different algorithmic per-
 formances account for the most variance depending on whether one re-
 gresses timing or dynamics: AP (1, 1, 1, 1, 2) in the case of the timing data,
 and AP (1, 1, 2, 1, 1) in the case of dynamics.
 This suggests that different level weights may account for the variance in

 the human data for timing and dynamics, a result not predicted by the
 Todd model, which explicitly links these parameters. However, because the
 amount of variance accounted for by any of these algorithmic performances
 is quite low (although significant), an attempt was made to produce two
 separate algorithmic performances that achieved a better fit with the tim-
 ing and dynamics of the original performance respectively. Some intuition
 was necessary here, and it was decided to produce a number of algorithmic
 performances that weighted the middle and two higher levels of the phrase
 structure in the case of the "dynamics" performance and the two lowest
 levels of the phrase structure in the case of the "timing" performance. This
 decision was motivated by the general pattern of regression values shown
 in Table 1: accentuated levels that seemed to produce better accounts were
 further doubled until the variance accounted for ceased to increase. In the

 case of timing, for example (1, 1, 1, 2, 4) and (1, 1, 1, 4, 8), might be
 possible candidates because (1, 1, 1, 1, 2) and (1, 1, 1, 2, 1) produced good
 matches.

 The highest value of R2 obtained for timing from this process was .426
 (p = .0001); for AP (1, 1, 1, 2, 4), the highest for dynamics was .201 (p =
 .0001): AP (4, 8, 8, 1, 1). Regressing the dynamic data from AP (1, 1, 1, 2,
 4) against the dynamic data of HP2 gave R2 = .015, the significance level
 falling to .018, and regressing the timing data from AP (4, 8, 8, 1, 1) against
 the timing data of HP2 gave R2 = .109 (p = .0001). On this basis, although
 the variance accounted for is still not as great as that of a repeat perfor-
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 mance, it is clear that a greater proportion of the variance can be accounted
 for by manipulating the level weightings for dynamics and timing sepa-
 rately. Figure 4 shows the timing data from HP2 and AP (1, 1, 1, 2, 4), and

 Fig. 4. A line plot showing interonset intervals in seconds for AP (1, 1, 1, 2, 4) and HP2
 against score position in triplet quavers.
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 140 W. Luke Windsor & Eric F. Clarke

 Figure 5 shows HP2's dynamic data and those of AP (4, 8, 8, 1, 1). Figure
 6 shows what might be considered a hybrid performance, combining the
 timing data from AP (1, 1, 1, 2, 4) with the dynamic data from AP (4, 8, 8,

 Fig. 5. A line plot showing key-velocity values as a decimal fraction for AP (4, 8, 8, 1, 1) and
 HP2 against score position in triplet quavers.

This content downloaded from 
�������������128.32.10.230 on Thu, 21 Aug 2025 00:44:55 UTC������������� 

All use subject to https://about.jstor.org/terms



 Expressive Timing and Dynamics in Musical Performances 141

 Fig. 6. A line plot showing interonset intervals in seconds for AP (1, 1, 1, 2, 4) and key-
 velocity values as a decimal fraction for AP (4, 8, 8, 1, 1) against score position in triplet
 quavers. These two profiles together constitute the "hybrid" performance.

 1, 1). This hybrid performance assigns more emphasis to lower levels of
 structure for timing and higher levels for dynamics. Moreover, the high
 correlation between this hybrid with the human performance suggests that
 the human performer may be similarly stressing the lower levels of struc-
 ture with timing, the higher with dynamics.

 Visual comparison of the timing profiles in Figure 4 suggests that al-
 though the algorithm successfully predicts the more global structure of tempo
 variation at bar and half-bar levels, it differs from the human performance
 in two main respects. First, whereas the algorithm changes tempo accord-
 ing to a smooth curve, the human performer tends to concentrate tempo
 variations into large deviations at or around phrase boundaries. This must
 lead one to question whether the performer is (1) simply delaying the on-
 sets of initial or terminal events in a phrase or (2) accentuating the initial
 notes of each phrase, which are always melody notes. This will be returned
 to later, in the general discussion. Second, the timing profile produced by
 the algorithm is far too regular in its structure to be mistaken for the hu-
 man performance. This is not necessarily because the human performer is
 unsystematic, because it is impossible to determine whether this is the case
 or whether a number of interacting yet systematic processes are at work
 here. Again, such questions will be returned to in more detail later.

 Looking at the dynamic data in Figure 5 reveals much larger discrepan-
 cies. The overall changes in the dynamic levels of the human performance
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 do seem to be well modeled, but local detail is simply not captured at all,
 partially due to the particular level weighting used, which emphasize large-
 scale structure. Again it is possible that the dynamics are being used not
 simply as a continuously varying expression of phrase structure but also as
 local intensity-accented markers for individual events, or smaller groups.
 An obvious way to analyze these discrepancies between the model and

 the human performer is to plot the residuals from the regression analyses
 between the optimally matched human and algorithmic performances for
 both dynamics and interonset intervals. These residuals can be thought of
 as representing the variance in the human performance not accounted for
 by the algorithm.
 Figure 7 shows residuals plotted against score position for the regression

 between the timing data from AP (1, 1, 1, 2, 4) (the timing weightings for

 Fig. 7. A line plot showing the residuals obtained when the interonset intervals in seconds
 for AP (1, 1, 1, 2, 4) are regressed against those for HP2, against score position in triplet
 quavers.
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 the hybrid performance) and HP2. No large scale periodicity seems appar-
 ent except for a tendency for some melody notes (especially those that oc-
 cur at the beginning of each bar and half bar) to be played longer than the
 model would predict. This could be accounted for by interpreting such
 lengthening as accentuation of the initial notes in phrases, accentuation of
 the melodic line as opposed to the rippling accompaniment, or a more
 abrupt tempo function.

 Figure 8 shows residuals plotted against score position for the regression
 between the dynamic data from AP (4, 8, 8, 1, 1) (the dynamic weighting
 for the hybrid) and HP2. Here, if there is an analogous accentuation of the
 melody notes, it is concealed among a much greater degree of local devia-
 tion. The residuals for dynamics do suggest that the melodic climax of the

 Fig. 8. A line plot showing the residuals obtained when the key-velocity values as a decimal
 fraction for AP (4, 8, 8, 1, 1) are regressed against those for HP2, against score position in
 triplet quavers.
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 extract (between bars 9 and 12, events 217-312), may be being given a
 more pronounced dynamic "curve" than the equivalent preceding four bars,
 something the model does not predict because of its equal distribution of
 dynamic variation between groups at the same hierarchic level. Indeed this
 is an effect that is explicitly notated by Schubert in the score (see the dy-
 namic markings in the score for bars 9-12).
 Figure 9 plots both sets of residuals on the same chart. The model pre-

 dicts that interonset intervals and dynamics should be negatively corre-
 lated (that short events should be loud). Figure 9 demonstrates that the

 Fig. 9. A line plot showing the residuals obtained when the key-velocity values as a decimal
 fraction for AP (4, 8, 8, 1, 1) are regressed against those for HP2, and those obtained when
 the interonset intervals in seconds for AP (1, 1, 1, 2, 4) are regressed against those for HP2,
 against score position in triplet quavers.
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 residual profiles are similar and positively correlated (R2 = .03577, p =
 .0002). If the performer is using timing and dynamic variation both as
 continuously varying parameters in the manner suggested by the model,
 but also as methods of accentuating events through intensity or length,
 then one might expect some events to be both longer and louder than oth-
 ers, in contradiction to the model, and as highlighted by the residual analy-
 sis. Figure 10 illustrates the residuals for the first two bars and the first
 event of the third, events 1-49.

 Observe, for example, the high residual values of events 1, 25, and 49
 for both the dynamic and timing data. These events can be interpreted as
 being accented because of their metrical position (first beat in bar), their
 being part of the melody, or their initiation of phrase units. Moreover, it is
 not just these particular events that are played louder and longer than the
 model predicts: note, for example, the way in which the surrounding events
 are played shorter and quieter than the model would predict, and how they
 increase in duration and key velocity as their score distance from the ac-
 cented events decreases. Note also that the residuals of the dynamic data
 switch from being generally positive in bar 1 to being generally negative in
 bar 2, suggesting that the model overestimates the increase in dynamics
 that might occur in bar 2 relative to bar 1 because of its relative proximity
 to the center of two larger phrase units. Note also that the dynamic residu-

 Fig. 10. A line plot showing the residuals obtained when the key-velocity values as a deci-
 mal fraction for AP (4, 8, 8, 1, 1) are regressed against those for HP2, and those obtained
 when the interonset times in seconds for AP (1, 1, 1, 2, 4) are regressed against those for
 HP2, against score position in triplet quavers for the first 50 onsets.
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 als show evidence of accentuation where the timing residuals do not, for
 example at event 20, another melody note. Hence, although the residuals
 suggest that timing and dynamics may have an additional, positively corre-
 lated factor not modeled by the Todd algorithm, this suggests that a per-
 former may accent with lengthening or increased dynamic individually, or
 in combination - not that timing and dynamics are always positively corre-
 lated at this level of analysis. Nor do these residuals, or the analysis as a
 whole, suggest that the model is incorrect: rather they suggest that the model
 is largely accurate in respect of one kind of expressive strategy, based on
 continuous modulation of tempo and dynamics, but that it fails to model
 others: that of the accentuation of individual events by dynamic stress or
 lengthening, and the use of overall dynamic levels to emphasize particular
 sections in the music, such as the climax in bars 9-11.

 General Discussion

 The first theoretical issue raised by this study is that of using single or
 multiple rules to model performance. What are the consequences of the
 single rule approach taken here for the study of expression in general, and
 in particular, is the notion that dynamics and timing are generated by the
 same rule supported by the data gathered and generated here? In answer to
 the first question, it is argued that attempting to stretch one rule to its
 limits, rather than attempting to assess the impact of multiple rules (e.g.,
 Sundberg, 1988), has advantages. Because the model used here is so single-
 minded in its avoidance of anything but phrase structure and continuous
 expression, it highlights other aspects of expression and allows their de-
 tailed analysis. Whereas the comparison of a human performance with an
 isochronous "score" may tell us little about the different strategies of ex-
 pression used by a musician and may conceal them if one strategy accounts
 for most of the variance, the use of a model such as this allows one to
 distinguish between different aspects of expression. For example, through
 analysis of residual data, continuous variation (such as rubato or patterns
 of crescendo/decrescendo) may be stripped away in a systematic manner to
 allow the analysis of discrete variation or different kinds of continuous
 variation. The failure of the model to account for the human data as suc-

 cessfully as might be expected from Todd's own study (Todd, 1992) re-
 quires some comment here. Although the regression analyses reported are
 highly significant, the low values of R2 do not suggest the same high degree
 of fit as achieved in this earlier matching study. One might, therefore, ques-
 tion the validity of using the model to "strip away" expressive deviations.
 However, it is not surprising that our data are less well accounted for: the
 piece used here, although similar to the Chopin prelude used in Todd's own
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 study in that it contains continuous isochronous patterns, is far less rhyth-
 mically undifferentiated, and hence might be expected to elicit a less uni-
 form approach to interpretation, calling for a wider variety of expressive
 strategies. Indeed, it would be extremely surprising if the model accounted
 for all performances of all music equally well, considering the potential for
 stylistic and individual variability. However, this does not invalidate the
 use of the model as an analytical tool: despite the low values of R2' the
 model is clearly capturing some underlying aspects of tempo and dynamic
 variation.

 The links between timing and dynamics proposed in the model have also
 been tested here. Although this is only a single case study, it is clear even
 from this that timing and dynamics are not always linked by a single func-
 tion. It is possible that timing and dynamics are linked by a number of
 different functions and are sometimes not linked at all: this last possibility
 is supported by the relative success of the hybrid performance and the analy-
 sis of the residuals produced by regressing real against algorithmic perfor-
 mances. Timing and dynamics may be (1) positively correlated where both
 are used to accent discrete events, (2) negatively correlated as suggested by
 the model, or (3) either timing or dynamics can be used to signal an accent
 or a phrase shape, but not both.

 Just as the data analyzed here raise questions about the number of rules
 needed to model a human performance, they raise the possibility that hu-
 man performances may derive from multiple representations of the musi-
 cal score. If we assume that the human performer is responding to higher-
 level phrases with dynamic modulation and lower level phrases with timing
 modulation, this might suggest one mental representation and two sepa-
 rate processes controlling the rate of modulation, or two representations,
 one capturing high-level structure and the other low-level structure. Clearly,
 if timing and dynamics are generated by a single physiological system (Todd,
 1992), then the current results can hardly be considered corroborative,
 although it is possible that more than one system of the same kind might be
 responsible. It is, of course, possible that performers avoid a direct link
 between timing and dynamics precisely because of its physiological links
 with the perception of self-motion, if such links exist, since emphasizing
 them might produce too unified a sensation of motion. Deviating from
 such simple patterns may in fact be one way in which performers signal
 structural features or express their individuality. Moreover, what kind of
 structure is responsible for the local accentuation of events highlighted in
 the analysis of residuals? It would be inaccurate to claim that an addition
 of a rule to handle metrical structure alone would necessarily account for
 the residual expression, as additional rules might also have to account for
 voicing, the possibility that phrase boundaries are marked by an accent, or
 any other kind of local detail chosen for emphasis by the performer. It
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 might also have to account for a decision by the performer not to use a
 particular kind of accent, or to fail to accent an event that might normally
 seem to require emphasis.
 A number of more specific aspects of expression have also been high-

 lighted here:

 1. Length accentuation and ritardandi: The analyses have shown
 that it may be possible to distinguish between lengthening a note
 for local emphasis and lengthening a note as part of a tempo
 function.

 2. Final lengthening and tempo "curves": The data support a fur-
 ther distinction between lengthening the final interonset interval
 of a phrase in order to delay the initial onset of the following
 phrase, thus forming a "micropause" between phrases (Clynes,
 1983) and more continuous tempo shaping across a number of
 interonset intervals (see Clarke, 1988).

 3. Dynamic accents and crescendi: The analysis of the dynamic data
 suggests a similar distinction between continuous and local use
 of dynamics: a louder onset can occur in a performance because
 it is in the middle of a phrase (at the apex of a crescendo) or at its
 beginning (as a loudness accent). Moreover, one hypothetical
 explanation for the possibility that higher levels of the phrase
 structure were emphasized by continuous dynamic change and
 lower levels by timing is that at lower levels crescendi and
 decrescendi are confusable with local accents, whereas tempo
 changes are not, although why this should be so remains unclear.

 4. Equality across groups: Analysis of the residual data suggests
 that, unlike the model, the human performer might choose to
 play particular groups louder than others, regardless of the fact
 that these occur at the same level in the phrase hierarchy and in
 the same position relative to the highest level in the phrase struc-
 ture. In the present case, this can be attributed to an explicitly
 notated aspect of the score, but it raises the possibility that per-
 formers may play sections louder overall for emphasis, perhaps
 responding to a melodic idiosyncrasy or some aspect of motivic
 (hence associative rather than hierarchical) structure.

 5. Systematic versus unsystematic aspects of expression: Clearly the
 algorithm output appears more systematic than the data from
 the human performances in this study. Part of this is undoubt-
 edly due to the simple structure of the algorithm, which cannot
 (and does not) claim to be a complete model of expression. How-
 ever, this raises a difficult question: how complex should our
 explanations become before we admit that certain expressive

This content downloaded from 
�������������128.32.10.230 on Thu, 21 Aug 2025 00:44:55 UTC������������� 

All use subject to https://about.jstor.org/terms



 Expressive Timing and Dynamics in Musical Performances 149

 aspects of a human performance may be unsystematic or too
 idiosyncratic to model with general rules?

 Before concluding it should be noted that the algorithm can be used to
 generate sounding algorithmic performances via MIDI. The assessment of
 such performances is the subject of another paper (see p. 13 of this article;
 Clarke & Windsor, 1996), so no attempt is made here to systematically
 and rigorously assess the sound of either the human performer or the algo-
 rithm. However, because a number of such algorithmic performances have
 been produced, some qualitative impressions would not be out of place.
 First, in order to create an artificial performance that sounds in any way
 convincing, sustain pedal has to be added in order to elide the triplet
 semiquavers. Second, adding a constant to the key velocities of the melody
 notes to bring them forward in the musical texture (see Repp, 1996, for
 empirical support for this move) seemed appropriate. Both of these steps
 can be considered legitimate because the model explicitly avoids such is-
 sues; these steps ensure, rather, that the successes of the model are not
 obscured by other variables. The main impression of the algorithm output,
 edited in this way, is that all the algorithmic performances that directly link
 timing and dynamics as envisaged by the model in its original form sound
 distinctly odd, almost unsettling, whereas dislocating them (as in the hy-
 brid performance) provides a much more acceptable result. To test this
 hypothesis, nine postgraduate music students at the University of Sheffield
 were played the hybrid, and the two algorithmic performances on which it
 was based (AP [1, 1, 1, 2, 4] and [4, 8, 8, 1, 1]) in a random order and
 asked to indicate which performance they preferred (they were not told in
 advance how the performances had been arrived at). The results were strik-
 ing: all nine subjects preferred the hybrid (%2 = 18, p < .0001).

 Conclusions

 In this paper, we have demonstrated the way in which a model of perfor-
 mance may act as a tool in the analysis of performance data. Although the
 model fails to account for every aspect of a human performance, and could
 possibly be revised in the light of the data collected here, these failures are
 seen as positive because they highlight different aspects of musical expres-
 sion. The model provides a baseline that is derived from a strong theoreti-
 cal position, against which other expressive strategies can be assessed. In
 its clear and unambiguous modeling of continuous expressive strategies,
 the model allows one to factor out noncontinuous strategies in a manner
 not possible when a performance is analyzed in relation to an isochronous
 score.

This content downloaded from 
�������������128.32.10.230 on Thu, 21 Aug 2025 00:44:55 UTC������������� 

All use subject to https://about.jstor.org/terms



 150 W. Luke Windsor & Eric F. Clarke

 Clearly, however, this study presents only a first attempt at this kind of
 analysis, as an example, rather than a conclusive piece of research. It uses
 only a small sample of possible model outputs, it deals with data from only
 one performer, and music of one particular style. All of these limitations
 must be addressed before too many generalizations are drawn. Within such
 limitations, however, the strength of the approach and the kinds of insights
 available have been shown.

 One obvious limitation of this research, and indeed of all research of this
 kind, is the limited interest paid to information outside the score, whether
 seen as musical knowledge or information available from the performer's
 surroundings. These limitations are accepted, and it is hoped that research
 such as this may highlight those aspects of expression that demand expla-
 nations that cannot be derived from a purely score-based, generative ap-
 proach to expression (see Clarke, 1988). For example, in this study, we
 have repeatedly returned to the possibility that different expressive strate-
 gies might be chosen to emphasize the same structural features (e.g., ac-
 centing an event on a phrase boundary rather than using continuous change
 in duration, or choosing to use timing and dynamics to emphasize different
 levels of phrase structure). The flexibility of expressive strategies and the
 interchange between them is not well accounted for by existing models of
 expression, and this study, like that of Drake and Palmer (1993), empha-
 sizes the complexity and richness of musical expression as a mode of hu-
 man behavior. This, point, however, should not obscure the value of dis-
 covering such richness and complexity by systematic means. Hence we see
 no conflict between approaches that start from a reductionist standpoint
 (such as Todd, 1992) and those that build in some notion of flexibility or
 diversity from the outset (such as Desain & Honing, 1991). It is surely
 heartening that the empirical study of musical expression provides a do-
 main that constantly resists simple and systematic explanations and hence
 extends our understanding of human behavior beyond limits imposed by
 less challenging and complex tasks.1

 1. This study was funded under the Small Grants to the Social Sciences Scheme of the
 Nuffield Foundation. Thanks are due to our skilled pianist, who was more than accommo-
 dating and provided us with such excellent performances. Acknowledgments are also due
 to Neil Todd, without whom this work would have been impossible, and to Bruno Repp,
 Carolyn Drake, Greg Sandell, Peter Desain, Henkjan Honing, Alan Wing, Piet Vos, and
 Dirk Povel for their comments on earlier versions of this paper.
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