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INTROLUCTICN

At the last meetirg of this group, we presented a
general methkod aré¢ a set of subroutines for relating
"music-time" or "EASS1" and “"clock-time"® «cr "PASS2"
scores (**1), This pager will ccntinue that
investigaticn, epphasizing certain characteristics of
the @music-time sccre which are left unchanged under the
operations of linear and equal-ratics tempo
modificaticn. We will wuse the terms ard models
develcped in our earlier paper. Thts we will cspeak of:

1. beats as a FIrcperty of xusic-time scores {(i. e. a
half bcte gets twc teats)

2. duraticn in seccnds as a cproperty of clock-time
scores {i. €. a half rote lasts .8 seconds);

3. the clcck factcr cf a teat pcint as the feriod of
the temro at tkat beat pcint. Thus the clecck factor
is the time, ir seccnds, that one beat would have at
the given tempc. The clock factor associated with a
temgc cf 60 is 1; with 120, .5; with 60C, .1; and

4. the dcraticn cf some rassage in seconds as the
integral of +tte <clcck factor curve of the passage
with respect tc beats.

A complete set of formulas for ccmputing tempo and
duraticn using <several ccmmcn curves is given telow.
Note that the seccnd forevla c¢f each groupr is for
duration . and irvclves the integration of the
clock-factor curve associated with the first formula of
€each grocrg.

Sections 1-8 and the Arpendices of this article
were sritter by Jchn Fogers ir consultationm with Philip
Batstcne, whose smtsical ideas prcvided one of the key
motivations for this effort, and John Rochstroh, whose
mathematical expertise prcvided the essential framework
for otr work. We are also indebted to Robert Carrier of
the Research Couptter Center of the University of New
Hampshire for general help and advice in the rreparation
of these sectiors, particularly Appendices I and II.
Section 9 ¥as written by Philip Batstone, but makes use

- of concepts and prccerassirg technigies developed by the

other two authcrs. We refer readers who are interested
in further study cf Prcf. Batstone's comrositioral
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techniques to his dcctoral dissertation (¥*2,%43),

1. LINEAR TEMPC (kyperkolic clcck factor)
1. T(bp)=(K #* tp) + T1
2. TUE(bp)=(60/K) * LN(T(rp)/T1)

2. EQUAI-RATICS TEFPC and CLCCK FACTOR
1. T(EE)=T' * ((12/T1)**(bp/B))
2. TUR(bp)=(6C/T1)*(B/LN (T1/T2)) *((T1/12)**(bp/B)-1.)

3. INVERSE FQNBL-RATICS TEREC
1« T(Ep)=T! + T2 - T2%(T1/T2) **(tp/B)
2. TUE(bp)=((6C*E)/((T1+T2)*LN(T1/T2)))* ((LN(T1/12)*#*(bp/B))~-
1IN (T1+T2-T2%{T1/T2) #*% (bp/B) /T1))

4., HYPERECIIC TFMEC (linear clock factor)
1« T (bp)=(RP*11#T2)/(B*12 + bp*(T1-T2)
2. Dur(tp)=60 * (bp/T! + (bp**2/2*B)*((1/12)-1/T1))

wkere

'. bp is scme fteat rcint,

2. T(bp) is the tempo at scme leat
pcint,

3. DUR(bp) is the duration ir seconds
at some teat pcint,

4. T1 is the initial tempo,

€. T2 is tte fipal temro,

6. B is the total number of Leats in
the passage,

7. K=(T2-11)/B,

8. LN is the log, base e. .
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FIVE CRITERIA for RHYTR¥IC SINIIAERITY

When the tempc of a passage is absclutely steady, the
ratio of the clock times of successive beats is 1:! and the
ratics of tke actual duraticns of the notes in the
"clock-tire"™ =score are the same as the ratics of the
durations of the notes in the +wsusic-time score. If a
ccntinuous, mcnotonic curve of tempo change is arplied, the
clock times c¢f successive beats change contintously in
length and their ratio is, obviously, no 1lcnger 1:1,
Clearly,the durations and the ratios of the durations of the
notes in the clock-time score will no lcnger match those in
the music-time score. There are five criteria we have found
to be helpful when evaluating the similarities cf passages
undergoing tempc change to passages rlayed at a steady
tengo.

1. The Shape of Tempc Change vs the "Straight Line"

Consider tte tempi and clock times of successive
beats im relaticn to the starting tempo (T1) and its
associated clcck factor (CF1) and the ending tempo (T2)
and its associated clock factor (CF2). A curve which
diverges slowly frcm T1 prcduces a realization which
diverges =slowly from a steady, T! realization of the
notated passage. A curve which moves rapidly towvards
the goal temro produces a realization which nmoves
rapidly tcwards a steady, T2 realization of the notated
passage. Perhaps the simplest criteria for evaluating
tempo change is to ccmpare the curve the teepo change
functicn rproduces to the straight lines which would be
troduced by steady tempo realizations at either of the
two specified tempi.

2. The "Equal-To®,"Greater-Than", and *less—-Than"
Relationships

A second criteria has to do with the relationships
equal-to (EQ.), greater~thanm (GT.), and less than (LT.).
All tengo change functions destroy the Q.
relationship: notes c¢f ecual written value are not of
equal clock-tize value. Their clock-time duration
depends on the tempo-change function being used and
their place in the furcticn. Some tenmgo change
functions preserve the GT.~IT. relationship and some do
not. Consider a case of a music-time rhyths cf a dotted
eighth fcllcwed by a sixteenth. The dotted eighth has a
greater teat value than dces the sixteenth. Stppose the
tempo is <lowing. If the ritard is great erough -- if
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the relatichnsip retween the beginrirg tempo and the end
tempo 1is 1large €nough -~ then the clock time durations
produced will nct have the same kind of relaticnship as
the beat duratices. For e€xample, we cculd choose a
ritard that wculd make the clack-time duration
associated with the sixteenth note EQ. or GT. the
clock time associated with tte dotted eighth. These
anomalous situaticns cccur when (1) thke "direction" of
notated rhythm ccntradicts the "direction" of tempo
change =-- 1in ortr case the direction of nctated rhythn
was long to short vwhile the directicn of terfo change
was fast ({or shert) to slow f(or 1long) ard -(2) the
difference in the given tempi is large in relationship
to the <ctange in notated values. If our music-time
rhythn had teen a whcle ncte fcllowed by a sixteenth
note, it would tave taken a much more extreme tempo
curve to catse tle sixteenth note to take +tte 1longer
time.

Tempc chance functions which preserve the GT.-1T.
relaticnstip are irtuitively simpler and of mcre general
use. If a significant -number cf the durational
relaticnshigs c¢f the music-tire score were fcund to te
reversed in the clock-time score, serious guestions
would be raised atout the aprrogriateness of the tempo
function being arplied and the relaticnship of the
perforeed gpiece tc the notated cne. It is alsc relevant
for ovur ©purposes to note here that neither the
equal-ratios nor the 1linear function t[reserves the
GT.-LTI. 1relaticnship for all cases.

The Maintaiprance cf Rhythsic Frorortionality

A third criteria ccncerns the proporticnality of
rhythes. Since, in a steady temro, the ratios of
successive Lteat dtrations is 1:1, all steady tempo
performances of a rassage "sound the same", ir a sense.
In its mcst obvious sense, pilopcrtionality of notated
values is lcst under tempo change. The relationship of
a dotted eight tc a sixteenth is different depending on
where they are 1lccated. The ratio of a dotted eight
fcllowed immediately ty a sixteenth is different from a
dotted eight to a sixteenth two beats later. There is,
however, a sense in which a certain "motivic" aspect of
proporticnality may be mairtained. The prcpcrtionality
of a dotted eightt fcllcwed by sixteenth woulé no longer
be 3:1 and the G1. relationship wculd not necessarily
be preserved, rtut ¥e might expect that wherever this
"motive" is found c¢r the curve, it would te the same
Eroportion. Fortter, the relaticnship of a dotted
eighth to a sixteenth two Leats later would nct be 3:1!,
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would nct te tte =<came as a dotted eighth followed
imrediately by a sixteenth, and wculd nct recessarily
preserve the GT relationship; tut it is pcssible to
make it tte same as tte relaticnships tetween all other
dotted eighths to sixteenths following two Leats 1later.
The equal-ratios curve is tte cnly tempo furction that
Freserves this imrcrtant asrect cf proporticnality, and
that is cpe reascn most terro change programs have used
it as the "“tase function". Cther functiors produce
differing Trropcrticns depending on where the rassage is
located on the curve. Thus the rhythmic motive of a
dotted eighth fcllowed by a sixteenth would produce
differing clock ratios depending on its locations in a
musical passage +with rcn-equal~ratios curves. 1In this
sense, non-equal-ratios curves ©produce passages which
“sound different" depending cr their temro.

There is a second astect of rhytheric
proporticrality wkich must be nbpentioned. Suppose e
have, in a steady tempo, twc voices both stating the
same rhytheric ©Eprorortions, c¢ne twice as fast as the
cther. There is nc ccntinuous function that guarantees
rhythasic rfrrcporticrality of these voices urder tempo
change. Scme ramifications of this problem will be
discussed later ir ccnnecticn with mensuratior canons.

Constant Dtration and Tempo Change

A fourth kicd of jrvdgement about rhythpic
sipilarity bas tc do with passages whose rumbers of
beats and tempi are related by scse constant. Suppose
we have a 10-teat passage at tempo 60 followed by a 20
bteat passage at terpo 120. Tte number of teats is
doubled tut so is the tempo. Each passage will take the
same amount of clcck time. In general, if the number of
teats in +the rassage and its tempc are both sultiplied
by the same constarnt, the clock time duratior of each
passage is the sare. We now add the conditicn of tempo
change.

Suppcse the terpc accelerates frcm 60 to 120 over
the first 10 tLeats and 120 to 240 over tlke mnext 20.
Many functions may te manifulated sc that they prodtce
these gcal tenri and so thkat the two passages take the
same amount of clcck time; but only one continucus
function =satisfies Loth ttese ccnditions -- the linear
function. The slcpe or increerent per beat is 6
(6%10=60) when we @pove frcm 60 to 120; it remains 6
(6*¥20=120) when wWe move frcm 120 to 2490. A
discontinucts equal-ratios functior, for exarrle, would
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te needed tc prcdtce ttese tempi and duraticns since the
equal-ratics function that moves frcm 60 tc 120 over 10
teats would move frce 120 tc 240 over the next 10 teats,
not the next 20.

The "ccnstant duraticn" prorerty is imgpcrtant in
many musical ccntexts since it allows one to think of
proporticnal tempo change versts prcrcrtional note-value
change in an intvitively simple manner. The property
will be of the first importance with reference to the
rthythric extracticn prcceduvres ' used in Phillip
Batstone's music.

Second Order Similarities

Closely related to tte picperties discussed in 2
and 4 above is cre in which a "new tempo" emerges frcn
manipulaticn of an old. In such cases, a new
"music-time" SCOTE€ seess tc provide a simpler
correlaticrn with the rerformance than the rwusic-tinme
score which generated the perfcrmance. '

Suppcs€ a series cf apprcximately equal duraticns
were to result ficms a gradual accelerando cf a music
time passage whick contained gradually increasing note
durations. Other things teing equal, a listener would
rrobakly interpret the passage in an approximately
steady tenmpo. Sinilarly, if a series of durations were
to emerge wvhich could be interpreted, €ven
approximately, in cne steady tesmro, a listener .would
most likely make tlat interpretation.

If a pattern cf tempc change is repeated over a set
number of teats, this results in, at the very least, a
pattern of "teat-drration"® repetition. This pattern,
even if scmewhat irreqular, may tend to be heard as "cne
tempo', This scmewtat vunusual view of tempo is
discussed in detail in connection with musical examples
in Secticns 8 and 9 of this parer.
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ECUAL-RATIOS TEMEOQO CHBANGE

In an egqual-ratios accelerando or ritard, temgi change
is proportionally tte sase frcm beat to teat. <Ccnsider an
equal-ratics accelerandc from T1 to T2. As tempi along the
equal-ratios curve argroach T1, the absclute differences in
tempi are smaller and the clock times asscciated with
successive Leats aprrcach the clock time associated with the
steady teapo, T'. As tempi alcng the egual-ratios curve
arproach T2, the altsclute differences in tempi are larger
and the clock times associated with successive beats
arproach the «clecck tires associated with the steady tempo,
T2,

In general, the larger the T2/T1 ratio, over a set
number of ‘teats, tte more thte function's shape resemtles a
parakcla; the smaller the T2/T! ratio, the more the
function's shape resemliles a 1linear accelerarndo. The
fcllowing takles and the graphs included in Exasmple T helg
pake this relaticnship clear.

1. 1.5 Ze {linear shape)

1. 1.414 2. (egqual-ratios begin)
1. 2. 4,

1. 4. 1€.

1. 10. 100.

1 1000. ©  1C00000.

The greater the T2/T1 ratio, the 1less time the
accelerando takes and, in that sense, the faster it is. But
tte greater thke T2/71 ratic, the greater the rprcrcrtion of
the function that stays near T1. 1In that sense, tle greater
the ratio, the more slcwly one aprroaches T2,

As the T2/T!' ratio is decreased, we approach the
arithmetic mean of tte two tempi. To generate functiornal
shapes which %ill arprcach T2 mcre rapidly than tke 1linear
functicn, cne can uvse the inverse equal-ratios function or
any of a large rnumber cf cther functions described im our
earlier article. (**1)

In ovur particular isplemertaticn c¢f the egual-ratios
curve, we treat ritards as the wirrcr cf accelerandi. Thus,
in a ritard, the greater the T2/T1 ratio, the greater the
progortion cf the furction that is near to T1 and, in this
sense, the mcre rapidly it apgroaches T2,
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% EQUAL RATIOS CURVE -- MIDPOINT PROPORTIOMAL TO 22%.3 ? €ouaL RATI0S CURVE -- MIOPOINT PROPORTIONAL TO 100%%.3

1.09

1.04

1.38

1.28

EQUAL RATIOS CURVE ~-=- NIDPOINT PROPORTIOMAL TO 162%.S

7.50 0.20

00 00 .00 00 00 10.0F3.00 1.08 00 3.00

-00
B 11 4

EQUAL RATIOS CURVE -~ NIDPOINT PROPORTIONAL TO 1000000%%.%

11.00 13.00 15.00 1?7.0.

.00 7.00 @9.00
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LINEAR TEMPO CEANGE

In a linear tempc change, tempi succeed each cther by
equal differences. Ar important negative feature of linear
temrc change is that all rhythmic frcportionality is 1lost,
even that which ve earlier called "motivic". 1In this sense,
linear transfcrmaticps are not intuitively similar to steady
temri since tte changes they rproduce are propcrtionally
unique to each pcrticn cf +the furcticn, As we observed
earlier, perhars the most inportant invariant uxrder linear
tempo transfcrmaticn 1is the fpreservaticn of <clock time
durations of teat segments whcse tempi and beat lengths are
related by scme constant., :

Linear accelerandi and ritards are automatically mirror
irages of each cther, thus no convention need te adopted
here as was necessary ir egual-ratios. Let us consider,
then, a 1linear tempc transfcrmaticn between T1, the slower
teego, and T2, the faster cne. The durational or
clock-factor curve asscciated with this tempi curve would be
a hyperkclic decrease frcm (60,71) tc (60/T2). Suppose we
ccmpare these curves uwith an equal-ratics accelerando from
T1 to T2, We see that the tempc change is mcre 1rapid than
equal-ratios at the beginring of the ctrve and less rapid at
the end. This means that, for any two given teagi, a linear
accelerando afpproachtes T2 initially mcre rapidly than does
an equal-ratics accelerando. Ccnversely, a 1lipnear ritard
arproaches tke slower temro iritially less rapidly than does
an equal-ratics functicn. Since the fproportion of tempi
change 1is ccntinuotsly decreasing in a linear accelerando,
there is a sense in wtich a linear accelerando resemktles a
steady teBro more and sore closely. Conversely, in a linear
ritard, the ¢fproperticn c¢f temri change is continuously
increasing and se divergqe more and rore frcm a steady tempo.
Rapidly changing linear ritards can result in surprising
differences in rhythsic prorortions between music-time and
clock-time scores.
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LINEZR and ECUAL-RATICS REALIZATICNS of a SIMPLEF PASSAGE

Consider tte follcwipg written musical exaszple:

MOUSIC FXAMPLE 1

We see a passage tlat ritards as it moves up a D-major
scale and accelerates as it moves back down. The same
rhytheic mctive is 1ereated as the begirning and end of each
ritard and accleraticn. The mctive employs a dotted eighth,
sixteenth, and an eightt. The ratios of these in lteats are
1.5:.5:1. We will rncw examine four renditicns of this
passage. We alternately hear -egual-ratios ard linear
functions aprlied. The first rpair vuse goal tempi of
120-60-120. 1he second pair use gcal temgi of 480-60-480.
The followirg tatle ccmpares the ratios c¢f duratioas
rroduced ty each renditicn. The grarhs of these tenmpo
furctions may te seen in Example U.
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TENPL
J.IJ.:IO 68.00 76.00 $4.00 ©2.00 100.00 108.00 110.00 124

|

at

 EQUAL RATIOS FUNCTION (120-60-120)

+20

12.00 14.40 10.80 10.20 121.680

TENP1

naa.oo 68.00 768.00 84.00 ©2.00 100.00 108.00 118.00 124.00

LINEAR FUNCTION (120-60-120)

+00 <40

/

12.00 14.40 16.80 19.20 231.00 34.00
. BEATS *

415

210 TENP1
11.50 17.00 22.50 28.00 33.50 30.00 44.50 S0

TERPL
11.80 17.0C 22.50 26.00 33.50 39.00 44.30 SO

210

00

J.00 .

EQUAL RATIOS FUNCTION (480-60-480)

.00 .40 -80 730 9.60 -12.00 14.40 10.80 18.20 21.30 2
EATS

L INEAR FUNCTION (480-60-480)

200

«00 «40 00 .20 12,00 14.40 10.80 ‘IO.ZO a1.e60 3

BEATS

4.00
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FHILIP BATISTICNE'S PITCE/REYTHM SETIS

Philip Batstone's music makes use of a @gethcd of
Fitch/rhytsic organizaticn in which each rparticular
pitch-class transposition of a pitch-class set is associated
with a rhythric transrositicn of a set of FLeat
Fcints (**2,*%3), Pitck-class transpcsition is defined in
the usual manner as tte meod 12 additicon cf a comstant, k, to
the original set of ritch-classes, while teat-point
transposition is defined as tke multiplicaticn of the
criginal teat-rcint numbers by sose constant, I. This means
that all intervals tetweéen beat-points in the transposed set
are L-times as great as the criginal intervals, later vwe
will examine in detail the relationships Letween pitch
transposition and rhythkric tracspositicn in this system. We
will now ccpnsider <characteristics of the beat point set
itself. We gererate bteat points for our set from the
formula(see *#*2,pages €S5-71):

(b*#*n) *m,mod 2z where

Y is an integer tase

n is an exgronent ranging frcm C to c-!
wtere c is the cardinality cf the set

P is a multiplier and in this examgle

will te set to ' (see Appendix II)

z is an integer modulus,

We see an exargple tased c¢cf trovwers of 3, mod 35
{(t=3,z=35). 1This mcdulus has teen chosen to prcduce 12 teat
Fcints {(c=12).

Powers cf

()

e Bod 35

1 3 927 11 32329 17 16 13 4 12 (teat points ir
generated crder,
mod 35.).

Beat pcints are cererated in the order cf fpowers of 3,
mcd 35 and all pcwers cf 3, rod 35, are generated as beat
rcints., Thus wultiplying the beat ¢fcint numkers by any
gcwer of 3, wed 35, will permute the order of the numters
and will generate nc nevw keat pcints., It is a gemeral rule
that if scme ordered set of numbers is multirlied by a
constant, then the intervals Letween the numbers in that set
are multiplied by tke <=ame constant. If we mrltiply our
beat points in generateé crder ty any power of 3, mod 35, ve
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FITARD
func T2/11 Bl B2 R3 RY RS R6
st w1 1.5 .5 1. 1.5 .5 1.
EEF1 2/1 1.38 .u8 1. 1.35 .48 1.
LI 2/1 1.38 . U8 1. 1.32 .47 1.
ER2 8/1 1.1 .44 1. 1.1 .44 1.
112 8/1 1.29 .47 1. .83 .37 1.
ACCFLEFANDC

T2/1 E7 F8 RS R10 R R12
ER1 1/2 1.66 .22 1. 1.66 <522 1.
LI 172 1.707 .£27 1. 1.62 .S1€ 1.
EF2 1/8 2.035 .69 1. 2.035 .56¢ 1.
112 1/8 2.€36 .€06 - 1, 1.73 52¢ 1.

In the ritards, tte seccnd and third note of the
rhytheic motive Leccme relatively lcnger inm relation to
their music-tise ratics. Thus the ratio c¢f the first note
to the last beccmes si1aller. Since a ritard ccntiadicts the
directionality of the written rhythm (lcng to short), it is
rcssible that +the ritard may mcdify the sense of the
rthythric relaticnshirs. This actually barpens at the end of
the linear ritard where the dotted eighth's value is shorter
than the eighth bty the ratio of .83.

In the accelerandi, the seccnd and third mnotes become
relatively <chcrter in relaticn to their music-time ratios.
Although there is the pcssitility of a duraticmal inversion
tetveen the <seconé and third rotes, this does nct occur in
cur examples.

The equal-ratics function produces the same ratios fdr
this motive withip ary cne egual-ratios accelerardo or any
cre equal-ratics ritard. The ratios are, cf course,
different fcr different T2/711 ratios and are different
depending cn wtether tte rassage is undergoing accelerando
¢r ritard. The 1lirear function prodvces differing ratios
within any ony application of the function.
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will simply rctate tle set of teat pcints sicce ttey are in
increasing powers~of-3 crder already. The intervals between
the beat points also urdergo a sizple rctation.

Multiplication cf the Generated Set

1 3 927 11 3229 17 1€ 13 4 12 (generated teat points)

2 6 18 5S4 162ccccccaeas (intervals not reduced
mod 35)
2 6 13 19 22cceeccacnes (intervals, mcd 35)

3 927 11 33 26 17 1€ 13 4 12 1 (*3, mod 35 = simple

rotation)

6 18 54 1€2ccccccnccas {intervals not reduced
mod 35)

€ 18 19 22.iceeccccaceas {intervals, mcd 35)

Suppcse wWe now scrt cur attack rpoints intc numeric
order. This forces tlem all within the sgan of the modulus,
which may be thcught of as "one measure"®. The str of the
intervals will of necessity be equal to the mcdulus.

Sorted Beat Ecints and Intervals

1 3 4 ¢ 11 12 13 1€ Y7 27 29 33 {teat pcints)
2 15 2 1 1 3 1 102 4 (3) {intervals)
(2+14542+1+4142+1+4104244+3=35) {sum of intervals)

If we multirly tte sorted teat pcints by I, wtere L is
any power of 3, we fprcdtce intervals that are L-multiples of
the criginal sequence. Fcr example, if we multiply the
scrted order by 3, we rroduce irtervals that are 2 times the
criginals. Frrther, the sum of the intervals is a
I-multiple cf tte origimal modulus. Thus is we multiply the
beat points cf the scrted set by 3, we multiply the sum of
tke intervals ty 3 as well.

Multiplicaticn cf Peat Pcints and Intervals

3 912 27 33 1 4 12 1€ 11 17 29 (teat points * 3)
6 315 € 3 3 9 3 306 12 (9 {intervals * 3)
(6+3+1546+3+434C43430+€6+12+9=105) (sum of irtervals)
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If our origiral set =spans J measures, then cur
L-multiple c¢f the original set will sran J*L meastres. The
"closest" multirle to the origimal set cccurs when L=t, the
number originally raised toc a power. With reference to cur
earlier examrle tte clcsest multifrle is 3. 1In a sense there
is pc wupper 1limit tc this procedure. If we accept the
modulus as a lirit for multiglicaticn, then the farthest
removed nmvltirlier fcr ovur example would be 3**£, mod 35.
This number wovld multirly the original duratioms by 33,
span 1155 teats, and wculd take 33 times as lorg to play as
tte original.

Since ouvr rhythsic set is cf size 12, we may associate
with its elements a pitch-class set of size 1Z. There are
ortiral ways of w®making this asscciationm. Consider the
rhythmic set in its gererated order. 1let us asscciate with
ttis set a set of pitch-classes whose crder is determined by
scme complete pitch-class cycle of the twelve-tcre systen.
Ccurlete pitch-class cycles are formed ty those
pitch-class-intervals +which are relatively rrire to 12,
namely 1,11,5,and 7. %e show an exasple tased on the
"chromatic scale", the cycle generated by
ritch-class-interval 1.

Beat-pcirt and Pitch-class Association

t 3 927 11 23 29 17 16 13 4 12 {generated teat
Ecints)
¢ 1 2 3 4 S5 € 7 8 910 1 (generated ritch
: classes)
! 3 4 9 11 12 13 1€ 17 27 29 33 {sorted teat points)
0 110 2 411 9 8 7 3 6 5§ ("sorted" pitch
classes)

These pc nuskters may be thcught of as "order numkters"®
cf the generated leat-point set. The shuffled crder shows
the order rpositicms in the original generated set of the
sorted set. Surpose scme constant, k, is added, mod 12, to
the set of order numters. This new set of order numbers
shows the rcsitions in the generated beat-pcirt set of a
second beat-pcint set fodvuced by &zultiplying tle =sorted
teat-point set ty t**pr, wiere b is the integer Lase and n is
an exronent tetween 1 and 1. Since ve think of
transpositicn as the addition, mcd 12, of some ccnstant, k,
to a set of pitch class nusbers, we have here associated
€ach possible pitch class transpositior cf a pitch class set
with a multiplicaticn cf a rhytheic set.
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In order to see wky this is so, it 1is thelpful to
ccnsider the follcwirg two strings of a base nurlter raised
tc a power:

3%%0 3*%*3 3*»Y = 1, 27, 3; intervals 26,-24
(add 1 tc exponents)
3*%1 3%%x4 3*s2 = 3, 81, 9; interjals 78,-72

We see that by adding ! to ovr string of expcnents vwe
#ultiply all numbters and intervals by 3. PFor tie general
case, adding a constart, n, tc all exgcnents in - a string
¥ill multiply all pruxkers and intervals Lty b**n, where b is
cur integer tase., Tle numkers and intervals letween numbers
sc generated mray te recuced mod z. For mcst of our
applications, the reducticn mcd z will not be useful. This
reduction would destrcy the multiplicative relationship
between our various =sinultaneots rthythsic statements.
Finally consider otr original pitch class rumkters as
exponents for the integer rase, b, where b = 3,

PC's as Feat-pcint Exponents

1 3 4 9 11 12 13 1€ 17 27 29 33 (values)
0 110 2 411 ¢ 8 7 3 6 5 {exponents)
Jxx" {tase)

Adding "1 to all the expcments mwmtst, of necessity,
sultiply all teat-rcint differemces, that is all curationms,
ty b, the tase. For the general case, adding scme constant,
n, to all the pitch class numbers-- thereby producing a
ritch class transpecsitico of the c¢riginal pitch class set --
will rproduce a rhythric staterent whcse rhythmic intervals
are t**n times as great as the original sorted rhythmic
statement. This alsc ®means that omne statemert of the
criginal set will take up the same amcunt of music-time as n
statements of the original set at a [fpitch-class
transposition cf n.
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{Exronents + 1) fTriple Eeat-rcint values and Duraticrs

3 91227 33 1 4 132 16 11 17 29 (values)
!t 211 3 5 01C 9 8 4 7 6 (expcnents)
KE L Sl (tase)

The fcllcwing exaEple shcws two vertically aligned
statements c¢f cur rpitch/rhythm sets. The relative pitch
transpositior levels are 0 and 1 and thus the relative temro
relations are 3:1. Cne original set moves at three times
tte tempo cf the transrcsed set and thus cne transposed set
takes up three times as much music-time as three
untransposed sets. Vcice ! makes three statements of the
urtransposed set while voice two makes one statemert at t=1,
Tte teat-point intervals (bpi's) -- the duraticns -- of the
tuio voices are given as the second line of each vcice. 1The
third line shovws the ritch classes (pc's) of each voice.

t n=d‘ n=1

Tso Sinmultaneous Statements

voice a 1 3 a 9 11 12 13 1€ 17 27 29 33 (bp's)
" " 2 1 2 1 v 3 110 2 4 3 (bpi's)
" " 0 1 10 2 411 9 8 7 3 6 5 (pc's)

voice b 3 9 12 27 33 (tp's)
" " € 3 15 6 3 (kgits)
" " 1 2 1 3 5 (pc's)
IYEESTTIET

vcicea 1 2 4 9 11 12 13 1€ 17 27 29 33
" " 2 15 2 11 3 110 2 1 3
" " 0 110 2 411 9 8 7 3 € 5

vcice t 1 4 13 1€
" " 3 ] 3 30
" LU 10 9 8
AR BRRKRK -

vcicea 1 3 4 9 11 12 13 16 17 27 29 33
" n 2 v+ &g 2 1t 1 3 110 2 4 3
" * 0 110 2 411 9 8 7 3 6 5

vcice t 11 17 29
" " 6 12 (9)
" " [ 7 6
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We menticned earlier that cur pitch-class set could be
formed frcs any cycle that is relatively prime to 12. 1In
order to sguare this idea with the "exponential"
interpretation of ttke pc numbers, it 1is sufficient to
irtroduce the idea that the set of pc's may be rultiplied by
any constant, ®, +where » is cne of the numbers relatively
Frime to 12. For tke general case m mnmnust be relatively
rrime to 1, +where 1 is the cardinality of the sets. The
following shcus our aktove example under pc multiplication by
5, mod 12.

Iwo Sipultaneous Statements, PC's * 5

vcicea 1 3 4 9 1% 12 12 1€ 17 27 29 33 (bp's)
" " 2 15 2 1 1 3 110 2 4 3 (bpi'e
" * 0 5 210 € 7 9 411 3 6 1 (pc's)

vcice b. 3 9 12 27 33 (bp's)
" " € 3 15 6’ 3 (Yfri's)
" n £ 10 7 3 1 (pc's)

A ARk Rgkkkk

vcicea 1 3 4 9 11 12 13 1€ 17 27 29 33
L. 2 5 2 1 1 3 110 2 4 3
" “ 0 5 210 &8 7 9 411 3 6 1

vcice £ 1 4 13 16
" " 3 9 3 30
" L] 2 9 4

AR FREARK R

vcicea 1 3 4 9 11 12 13 1€ 17 27 29 33
" " 2 +.5 2 1 1 3 110 2 4 3
" " 0 5 210 € 7 9 41 3 6 1

vcice b 11 17 29
" " 6 12 (9
" " e 11 6

We should ncw te akle to understand more fully the
close relaticnshir lLetween the pitch-class and teat-point
ofrerations of this system. A pitch-class is, by definition,
simply cne part of an cddly fcrmed expcnent -- pc¢ 6 needs a
registral numter to bteccme a frequency determinant. If wve
give it the register 8, we groduce the octave.pc numkter,
8.06. This is am cddly fcrmed expcnent in the =sense that
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MUSIC-TIME and CLOCK-TIME SIMIL2EITIES
BEATSTCNE FITCH/REYTEM SETS

.06 should be converted to .5(6/12) before the expomnent is
associated with its rcrmal tase, 2. Since we have Hust
shown hew pc nurters may be regarded as lteat-point
exronents, this means thkat the same numbers are <serving as
both rhythiic ard pitch exgonents,

Fach statement cf the lasic set or cne of its
transpositions may ke spcken of as a "set instance". It is
often conveniert to think of the "faster moving" sets of the
atove comtinaticns as the "lrackgrcund®. The "slower moving"
sets are exatracted frcm this tackgrcund and may be spoken of
as "extracted sequences", One straight-forward
ipterpretaticyr cf this kind of rhythmic scheme would have
"slower and slower" extracted voices against a steady

-tackground. Ancther interpretaticn would allow each set

ipstance to state tte same durations against an
appropriately adjusted, even faster =mroving, Lackground.
Both these irnterpretaticrs involve different tespi and may
te easily extended to irvclve changing tempi.

MENSURATION CANCNS and TEMEC CHANGE

In an earlier discussicn, we ccmmented that tempi
change destroys rhythric progortionality ip its simplest
sense. In a stealdy tewpo there are forr gquarters per whole
ncte and the gquarters rroceed at four times the sreed of the
wholes. <Ccnsider tte fcllowing passage played at a steady
temgo. X

MUSIC EXAMELE 2

a b ¢ d & F g &

2
J
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The fclioving equations are true for steady tempo:

tsa=d/c since all cuarter nctes are
equal.

tsa=4§/i since tke ratio of all "equal
ncte values" is 1.

In an accelerando the duraticral values of the quarter
notes beccme [frogressively shorter: similarly, the second
whole note is shcrter than the first. Thus

as/x >1, where x = t,c,d,e,f,q,h
i/9 > 1.

If we ccnsider an equal-ratios accelerando, tten

tsa =d/c =f/e = h/g

{z+1) / (b+c) =a/b

{a+l+c)/ (t+c+d)=a/b:

(2a+l) / (c+d) does nmot egual a/t but

(a+k) /(c+d) = (a/k)**2

{e+l+c+d) /(e+f+g+h) does not egqual (a/b)
{a+l+c+d) /(e+f+g+h) = i/

thts (a/b) does not equal (i/J)

tut (i/j) dces equal (a/b)**4,

The atove equaticrns make clear that, in egual-ratios
accelerandi, trogcrtional rhythric relaticns among
simultaneots vcices are lost. BAn "ideal" functior to aveid
this prokler +would be one in which proporticnality was
caintained cver all rossitle comparisons. Thus

(kra) = (d/c) = (d/4)

Unfortunétely, such a tempc-change function ccntains a
lcgical ccntradiction and cannot exist; only the steady
tempo functicr fulfills this ccndition.

These cbservations are gersane to our Patstone example
since the identification cf rhythmic progcrtion in
Eatstone~-type mrenstration canons may be of ferceptual
importance. If we apply an accelerandc tc cur earlier
"schematic%, tso-voice examrle, we can forecast that the
durational prorcrticns cf the faster vcice will nc longer be
the same as thcse of the slower. Suppose our acceleradno
used an equal-rations fucrcticn and moved from MM 100 to 300
over the 35 beats of tte slower voice. (See Secticn 8 and
Aprpendix III as well.) The fcllcwing table sumrarizes the
results of this accelerando ty ccmparing the Hmusic-time
proportions 1sith the actual resulting duratiors for the
first five notes of each vcice: .
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Frops 2 1 ] 2 1
v 2 durs 1. 127 .537¢ 2.448€ .87686 .41822
v 2 ratios 2.695 1.2¢¢ 5.855 2.0967 1.
v 1 durs .39172 ,19281 ,S3436 .36027 .17733
v 1 ratios 2.209 1.0873 5.2691 2.0317 1.

A linear acceleranco produces the fcllowing results:

Linear Accelerando

Frops 2 1 S 2 1

v 2 durs t.078 . £ 2.1855 .764 .3621
v 2 ratios 2.977 1.381 €.0€3 2.1099 1.

v 1 durs .38536 .1875 .89037 .33603 .164C7
v 1 ratios 2.349 1.1429 5.4269 2.0481 1.

Neither of these ctrves, ncr any other curve, allovws
each voice tc presert the sare proportional relationship.
This is an important limitaticn c¢n the coherence of
mensuraticn canons tndergcing tempo change. Indeed, it
suggests that cther rhythric features may be more important
ccmpositional resoctrces of Batstcne-type methods than the
fact that the vcices are, ir scme sense, cf the sanme
propcrtional rhythm.
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8.

SIECTLTANEOUS LINREAR 2CCELERANICS

We will ncw ccnstruct a rusical example tased on the

Batstone sets 1listed cn page 20 of Section 6. The example
will have the fcllowing characteristics:

1.
2.

10.

1.

12,

three voices will be enmployed.

each vcice will enter at a pitch-class transpcsition of
+5 in relaticn tc the ipmediately preceding vcice.

the pitch-class levels of the entries will thus be
0,5,10.

each voice will make four statements of its pitch rhythnm
set. :

the last three statements of each voice will +take the
same aamcunt of time as the first statement of that
voice. ‘

the first statement of each voice will take the sanme
amount of time.

each new vcice will enter after cpme complete statement
of the preceding vcice.

each new vcice will begin at the same time as the second
staterent of tte vcice already rlaying and will take up
the same amount of time as three statements in that
previous vcice.

€ach voice will tegin at the same tempo and accelerate
to three tires that tempo cver its first statement.

each vcice will accelerate tc nine times the original
tempo {or three times tle new) over its final three
statements.

cne continwovs lirear function will be used tc control
the shape cf accelerando for each vcice.

voice ' will begin in register 9 {cn note 9.0C); voice
2 will kegin ir register 6 (on note 6.05); arnd voice 3
will Legin in register 9 (cn note 9.10).

registraticn will be wused to help make tke voices
distinct with cne excertion. The "slow mwmoving",
extracted voice will always be doubled at thke unison
rather than the <cctave, wlen such durlications arise
between the M"relatively tackground"™ voice and the
extracted vgice.

A taped example was rlayed here. See Appendix ITI for

Pass2 Printout of that examrle. See Music Example 3 for a
"notated versicn".
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We note that:

t. the use cf the linear functicn has trought atout the
rhythmic alignment of the voices through tte use of cne
continuvots functicr.

2. 1in order to rake foreqround statements (extracted
sequences) take the same amount of time, it was
necessary for tte tackgrcund to be ccnrtinuously
accelerating. In fact, tke criginal "tackgrctnd voice"
disaprears with the entry of vcice 3. If it had
continued as a "“real line%, it would have eventually
reached the tempo cf 5100 reats per minute.

3. the duraticnrs (actually "attack rcint differences) of
each "extracted vcice" are the same as thcse of the
ocriginal vcice. Frcm this fact, it is obvicus that each
"extracted voice"™ takes the same amount of time as the
criginal and that each "bar" takes the same amount of
total clcck time. The temporal relaticns of 'cne bar to
another" are thts exactly the same, and, in a special
sense, e€ach entry is in the "same tempo™. (See Section
9.

4. the rropcrtions revealed by any two sisultaneous
statements are nct and cannot te the same.

5. the propcrtional c¢ifferences in rhythric values are less
as the passages accelerate since a linear accelerando
approaches, in this sense, a straight line (see Section

4y .
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TEMPC CHANGE as STEALY-STATE (F. Batstcne)

The preceding musical exanmrle ty Prof. Rogers uses the
same rpitch/rhythe set as the one discussed in my Fxamples V
and W. From these exaerples and frce the rreceding musical
cne, e see again tkat the use of the equal ratios curve
preserves prcgcrticnality according to the temrc change,
while extracted sequerces which are meant tc duplicate
previous rhythesic relaticnships dc nct and cannot. On the
cther hand, vtse of the straight line function, while of
necessity altering prcrcrticnality of successive statements,
does so in crder that extracted sequences can duplicate
exactly the rhythes c¢f set instances which occurred
rreviously at the sake tesro.

As we will see telow, this fact is not the only reason
for my choice of tte 1linear functicn and the associated
hyperbclic clcck factcr as part of my ccmpositicnal methods.
Eut this fact allcss me to think of any passage being
ccmpcsed as presenting cne particular primary tespo of amy
own choosing and pnot any one of a number of sirultaneous
tempi,

Most of my comfpositicns ccntain passages wkich contain
frcm three to five voices, each urndergcing tempo change. It
is at the mediur temro that the most imitaticn occrrs. 1f
we take a situation where, for imstance, the tempo change is
from Temrc ' (T) to twice that terpc (2T) over the statement
cf cne set instance, and from that new tempo tc tvice again
over the rext tuc statements {erding at U4T), it 1is clear
that the relative amcunt of tempo change over ‘the third
statement is less thar that over the first. In short, the
faster the gereral 1relative tesmpc, the slower tle rate of
change. Conversely, the sloser the general tempo
relatively, the greater tte rate cf change. The rext slower
statement, the cne shich would have preceded statement
number 1 on tte same tempc functicn, wculd double its teampo
over the latter half. In Example X, I have showr on the
left the relative tespo change of various sets and set
segments acccrding to relative general tempo and according
to the curve just descrited. On the right I have gathered
these together, not exactly against time, but sisgly c¢n a
curve illustrating tte differences in rate of change tetween
such statements.
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Note that the redium tempi, thcse within the circle,
are those amcng which there is +the greatest variety in
proporticnality. Please keep in mind that for =my purposes
this variety is desirable as well as recessary tc maintain
tenro identity. Cne right say that this variety is the
overriding reascn fcr vusing tempo change when it is not
perceived in the traditiomal way, eg., as stringendo,
rallentendo, etc.. In a passage to which the atove tempo
relaticnshigs arrly, it is those statements which move fronm
T to 2T which presert what I call the “tasic tesgo" of the
passage. I call this the tasic tempo even thcugh temgo
change is 1invclved, because the temro change is npot
perceived as stch. In fact, tte choice of the degree of
tempo change is «cfter dictated ty concerns of identity of
rhythaic figrres sithir set instances (and not just between
thenm). This is the kind cf redundancy which is
characteristic cf steady tempo and, as camn be seen fronm
Example Y, tempo chance is necessary in order to create this
identity. It is in this sense that I sgeak of "tempo change
as steady state".
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Now the tasic temrc, however fast or slow it may tLe
arbitrarily, can be altered in the wusual way in the
perfcrmance ccempletely independently of the considerations
discussed here. In fact, tltere 1is nothing in this
discussion which rrecltdes the aprlication of an expressive
ritard or stringerdc here and there, even if it appears to
ccntradict the tempo ctrve being used.

The distinction is between two different uses of tempo
change, One is really cn the perfcreance level, while the
othker is ertirely structural, having to do with harmcric
ensenble as well as mctivic identity. As shown in Exaample
W, the rhythsic relaticnship of the attack points cf several
simultaneots vcices is the first and foremost reascn for the
preference for cne kird of tempo ctrve oyer another.

To sum ur, there are three advantages to the choice of
the hyperbolic clock factor shich make it my checice in most

cf myerecent pusic. Tley are: ,

'. the preservation of harronic ccntexts,

2. the identifiability of melodic - material which recurs,
and ‘

3. the sinqularity of temro at any given time.

The latter, of cctvrse, nct c¢cnly 1is achieved at the
expense of rircrcrticnality tetween statements at different
temri, but, in fact, depends omn it.

Since what is true of combtinations like that of Examrle
# also hclds true for cosbiraticns cf ccmtinmaticms, there
are a great many rossitilities of ccrbipnatiom, including
those of dimiruticn (the additicn cf voices to a given
passage) as well as reducticn (the removal of voices frcm a
given passage). Ttere are alsc, of course, otter moduli
than 35, the mcdulus cf the atove examples (For a 1lcnger
mesical example usirg the atove set see #**4)., Unitl
recently, all the moduli I have used have been factors of
(2%%12)=1 cr of (3#312)~-1(#*2Z,4%3), The expcnent is 12
tecause the grcup cf ritch classes is cf crder 12.

For several years, I have teen using the <ccmputer to
realize varicus studies vhich enrloy 53-tcne equal
temperament. Aside frcs the nearly perfect harmonic
"fifths* and *"thirds", which is well known, thkere is the
fact that 53 is a rrime nurber. This means that any
interval withir +the grcup can generate the entire group.
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Tterefore the nueter of possible sets {excluding
transpositicns but nct retrogrades or inversiors) for the
tsé of my techniques tsing powers of 2 is not (2%#%853-1)/E3,
but (2**53-1), a 1larce numter indeed. For ccnvenience, I
use as my modults the nimter €3€1, cne of the prize factors
of 2#*%53-1. (See Afrrerndix II.)

Example Z shows tlte dispositicn of the four ~voices of
the taped exasple yct xill hear. This is one cf the four
“Quartets® frce the ©Ninth Study of Nipe Stidies for
Ccmputer, which were cospleted in 1578. This example wuas
realized on the DEC10 ccmputer at the University of VNew
Bampshire wusing MUSIC4BF and a set cf special FASS! tempo
and note-generaticn rottines.

(Taped exarple was played.)

While my pitch-rhyths techniques do not necessitate
ccmputer realizaticn, the ccomplexities involved in such
£3-tone studies, particularly skten curves of terpo change
are applied, make such compcsition without the computer
almost insvrmcuntakly éifficult,

A visual aid showing +he s postion of Hue four voices inHhe recorded example?
The relative tempo relatbnships are shown at [eft (5T , 25T, ehc.)

Sowe of he shurkind oud exding leupt are also. shown, :

20054 . Mas M=
D e e vt et S ——

A ('15-1.)"’ Fromthe G4 Yigh tothe ed ' _— =

TTHensss T) - _ - -
: Accels ~——— : J 4“:.}.; \L
- P, 3 m efire statement P2 ]
341, S ‘ 1%15. 7006 “There are ouwlyhree euttre s{'a(m:wfs

L | of Hhe_53- toue set presented by tndi-
B (7) . -M‘éﬂ“‘ voice, Hotulever, f & : mk
Bgthectie, 4 Fknalf le Hhe overl| combinatar, crenks
fer ud® stadenads.
¥ qurke e s of N S Gt
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BATSICNE MODOULI

Batstcne thythric sets are generated from the formula:

{b#*p) *m,med 2z

wlere

is the tase nurber

is a multiplier

is the modulus and

ranges frcm 0 to c-'1 where
¢ is tke length of (number of
elements in) the set.

N8B

We may make the fcllcwing cbservations:
]

1. the largest modtlts is (b#*#*c)-1. We will call this
particular modulus 21.
2. other and smaller 2's may be found providing:
1. the particular modulus, z, is 1larger thar ¢, the
size of the set.
2. the particular modulus, 2z, is a factor cf z1.
3. in the formula 2=(b**m)-1, m is not a factcr of c.
4., the pmev z is nct a factor of a larger "new 2z" that
fails tecause cf criteria 3 above.

Thus for sets cf size 12, tase 2:

1. 2*%*%12-1 = 4€385 is 21, the largest mcdulus.
2. the fcllowing factcrs cf 2! will work as new 2z's:

13,35,39,45,65,91,105,117,195
¢73,315,455,5¢5,819,1365

3. cther factors of 4095 ¥ill not rroduce enough beat points to
werk as new 2's since they viclate one of the criteria
listed above. Por exaxrle:

1. 63 will nct work since (2**6)-1 =63 and 6 is a factor °

of 12.

2. 15 will nct vwork since {(2**4)-1 =15 and 4 is a factor
of 12. .

3. 21 will nct work since 21 is a factor of 62 ard 63 will
not work.

435



Proceedings of The 1980 International
Computer Music Conference

EATSTCKE MUITIELIERS

We may make tle fcllcuing cbservations atout the

sultipliers which may be vsed;

1.

No multiplier canm produce a set «c¢f 1lager «cardinality
than that cf the criginal set.

If the sultiprlier is included in the original series, we
simply rerpute  tte <criginal series and &rc nev beat
points are created.

i

If the multirlier is not in the original set and is
relatively rrime to the modults, a new set cf the same
cardinality as tte criginal will be produced.

If the multiplier is a factor of the modulus then the
maximum cardinality of the set it will produce is S1,
where S1=S-1 and €={({mcdulus/pultiplier) provided St is
no larger than the size of the original set. 7The actual
cardinality of the set derends on the number cf nunters
in the origiral set which are distinct mod &, and thus
the actual size of the set may be less than S1t.

If the multirliexr is included in a set prodvced ty one
of the abcve cperaticns, then multiplying the original
set by the multiplier will prcduce a permutaticn of the
set in which the multiplier is incleuded.

Sets prcdcvced ty multiplication are either totally
identical ir «ccntent or totally distinct, prcvided the
tase and mcdulus 1empain the same. They canrot share
some nuaters and not share ctkers.

A1l possible ndlters up to and including the xcdulus may
be generated by «xultiplying the set by approgriate
mrultipliers.

Two examples of this procedure follow:
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Fovers cf 2,mod 35

i

1 2 4 8 16 22 2¢ 22 11 22 9 18 (*1)
3 6 12 24 27 33 12 16 31 34 17 26 (*2)
5 10 20 £ 10 20 etCeveccecceasane (*5)
7 14 28 21 7 14 28 21 etCeeecaas (*7)

15 30 25 1€ 15 30 25 15 @tCecevass (*15)

0

0 etCeceecceccccsccccccnccocnse (*35)

If we try all zultipliers frcm 0-35, mod 3%, vwe nmay

make the fcllcuing cltservations regarding the akove exanmple.

1.

multiplying by ary vpower of 2, mod 35, yields a

permutation of the numbers in the original set.
&

multirlying by 3 yields a nev set of size 12 since 3 is

relatively prime to 35 and is not included in the

original set.

multiplying the criginal set by any rumber fourd in the
np=3" set results in a set that is a permutation of the
m=3" set.

multiplying by £ can froduce, at maxisum, a new set of
cardinality 6 since [35/5)-1 is 6. Since there are only
3 nurbers distinct, mcd 7, in the original set,
multiplying by £ %will result in a nev set of cardinality
3.

multiplying ty 7 car frodvce, at @maximum, a set of
cardinality 4 sirce (35/7)-1 is 4. Since tlere are four
nusbers in the original set which are distinct, mod 5, a
nev set cf cardirality 4 is produced by this crperation.

if the original set is multiplied by 3, +the “"missirg"
three numters wtich are distinct, mod 7, are produced.
Multiplying this set ty 5 will produce the cther numbers
which cculd have been found in the Tg=5" set.
Multiplication ty 2 and then by 5 1is egquivalent to
multiplying the criginal set by 15.
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od 3

bl
o
2
D
'rn
39
ke
1=

1 3 9 27 11 33 29 17 1€ 13 4 12 (*1)
2 6 18 19 22 Z1 23 34 32 26 & 24 (*2)
S 15 10 30 20 25 £ 15 10 30 20 25 (*5)
7 2128 14 7 Z1 2¢ 14 7 21 28 14 (*7)
0 0 etc... {*35)

1. multiplication ty ary power cf 3, med 35, will simply
rermute the numters in the original series.

2, multiplicaticn ty Z will prcduce a new set of size 12
since 2 1is relatively prime to 35 and is pot in the
original set. ’

3., wpultiplication ty 5. will ¢froduce a newv set of
cardinality 6 sirce there are 6 numbers which are
distinct, rod 7, in the original set.

4, multiplication ty 7 will produce a new set cf size 4
since there are 4§ numbers which are distimnct mod 5 in
the original set.

Finally, consider a set based on pcvers of 2, mod 4095,
the largest rodulus. Suppose tlte resulting set were
multiplied by €5, mcd 4C95. 1In order for there to be 12
elements in the 1resulting set, there must te 12 numbers
distinct, mod €3, in the criginal set (4095/65=€3.). Eut
there are «cnly 6 rurters, and we produce a new ard sraller
set even thcugh we are sultiplying by a number which is
itself a valid wmodulrs. If +vwe were to multiply by €3,
however, we wculd prcdrtce a set of size 12 since there are
12 numbers which are distirct, mod 65, in the original set.
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PASS2 ERINTCUT of MUSIC EXAMPLE 3

VOICE ' EEGINS ARL STATES ITS DURATICNS.

67.
67.
67.
67.
67.
67.
67.
67.
67.
67.
67.
67.
67.
67.

st time

0.583
1.€€1
z.161
4.357
£.121
£.483
$.833
6.618
74127
9.800
10.261
11.128
11.734
12. 119

duor

1.€78
C.5C0
2. 165
0.7€4
0.362
C.350
0.585
0.309
2.673
0.462
0.866
0.408
0.385
0.188

oct.pc

9.00
8.05
8.02
9.10
9.08
9.07
8.09
8. 04,
8. 11
8.03
8.06
9.01
9.00 (V 1, 2ND STATEMENT)
6.0%

SECCNLC VCICE REFEATS THE ORIGINAL DURATICNS CF THE
FIRST VOICE WEILE TEBE FIRST VOICE CCNTINUES.

68,
67.
67.
68.
67.
67.
68.
67.
67.
67.
67.
68.
67.
67.
68.
67.
68.
67.
67.
68.
67.
67.
67.
67.
68.
67.
68.
67.
67.
67.
67.

12. 119
12.306
12,197
13,197
13.5233
12,697
12,697
13, €58
14.329
14,481
1£.892
15, 8<2
1€.153
16.656
1€.656
17.01¢
17.018
17.253
17.368
17.3€¢€
17.927
18,142
1€.249
1€.354
18.354
18.662
1€.662
1€.7€3
19.723
19.905
20.259

1.C78%%  6.05 (V 2 BEGINS)
0.890 9.02
0.336 5. 10
0.500%* 5,10
0.1€4 .08
0.162 5.07
2.195%% 5,07
0.470 9.09
0.152 <. 04
1.412 9. 11
0.261 7.03
0.76u%* 7,03
0.503 9.06
0.243 7.01
0.362 fetc) 7.01
0.235 7.00
0.350 7.00
0.115 $.05
0.559 6.02
€.S85 6.02
0.215 8.10
0.106 8.08
0.105 8.07
0.309 5.09
0.309 5.09
0.101 6.04
2.673 6.04
€.960 8.11
0.182 8.03
0.354 8.06
0.173 9.01
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67.
67.
67.
67,
67.
68.
67.
67.
67.
67.
68.
67.
67.
68.
68.
67.
67.

20.517
2C.686
20.769
21.176
21.335
21.335
21.413
21.491
21.721
21.797
21.797
22.524
22.6€3
22,663
22.937
23.269

22.654

0.169
0.C83
0.u407
0.158
0.078
0.462
0.078
0.230
0.076
0.727
0.866
0.140
0.408
0.274
0.134
0.385
0.188

9.00

9.05

9.02

g.10

5.08

5.C8

8.07

8.0¢

8.04

5.11

.11

8.03

6.06

6.06

8.01 (LAST NOTE, V 1)
6.05 (V 2, 2NT STATEMENT)
9.10

THIRD VOICE REPEAIS THE CUFATICNS OF THE FIFSET VOICE
WHILE TEF SECCND VOICE CCRTINUES.

NOTE THAT THIS ENSEMELE PASSAGE IS, THE SAME AS THE
SECCND ENSEMBIE EASSAGE.

68.
67.
67.
68.
67.
67.
68.
67.
67.
67.
67.
68.
67.
67.
68.
67.
68.
67.
67.
68.
67.
67.
67.
67.
68.
67.
68.
67.
67.
67.
67.
67.
67.

23.654
23.842
24.732
24,732
25.068
28.232
28.232
25,394
25.864
26.016
27.428
27.428
27.689
28.162
28.192
2€.554
28.554
2€.788
28.904

28,904

29.463
29.678
29.784

© 29.889

29.889
30.198
30.198
30.299
31.258
31.440
31.7S8S
22.053
32.222

1.C78%*%  9_.10 °(V 3 BEGINS)
0.890 6.07
0.336 9.03
0.500%*% 9,03
0.164 7.01
0.162 <. Co
2.195*% 9,00
c.470 7.02
0.152 6.C9
1.412 7.04
0.261 1¢.08
0.764%% 10.08
0.503 7.11
0.243 1C.C6
.362{etc) 10.06
0.235 16.05
0.350 10.05
0.115 7.10
0.559 9.07
0.985 9.07
0.215 7.03
0.106 7.01
0.105 7.00
0.309 9,02
0.309 9.02
0.101 9.09
2.€73 9.09
€.960 7.04 *
0.182 6.C8
0.354 6.11
0.173 7.06
0.169 7.05
0.C83 7.10
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67.
67.
67.
68.
67.
67.
67.
67.
68.
67.
67.
68.
67.
67.
67.

32.305
3z.712
32.870
32.870
32,949
32.027
32.256
332.332
33.332
34.C5¢
34.1¢<8
34.198
34.472
34.804
35.190

0.407
0.158
0,078
0.462
0.078
0.230
0.C76
0.727
0.866
0.140
0.274
0.408
0.134
0.385
0.188

7.07
7.03
9.01
9.01
7.00
7.02
6.09
9.04
S.04
6.08
9.11
9.11
6.06
9.10
8.03

(LAST NOTE, V 2)
(V 3, 2NC STATEMENT)

THIRD ENSEMBLF FASSAGE ENLS AS SECCHED VOICE

DROES CG1.
THIRD VCICE CCHTINUES WITH ITS LAST THREE
STATEMENTS.
67.  35.377 0.890 10. 00
67. 2€.268 0.336 7.08
67. 3€.608 0.164 10. 06
67. 36.768 0.162 7.05
67. 36.929 0.470 10.07
67.  37.400 0.152 10.02
67. 37.552 1.412 10.09
67. 38.963 0.261 9.01
67. 3%.224 0.503 10. 04
67. 39.727 0.243 8.11
67.  40.089 €.235 8.10
67. 4C.324 0.115 10.03
67.  4C.439 0.559 8.00
67. 4C.598 0.215 9.08
67. 41.213 €. 106 9.06
67. 41.319 0.105 9.05
67.  41.424 0.309 7.07
67. 41.733 0.101 8.02
67.  41.€34 0.960 9.09
67. 4z.794 0.182 .01
67. 42.976 0.3ty 9.04
67. 43.330 0.173 9. 11
67. 43,58€ 0.169 9.10
67. 43.757 0.C83 10.03
67.  43.840 0.407 10.00
67.  44.247 0.158 9.08
67.  48.606 0.C78 7.06
67.  44.484 0.078 9.05
67. 44,562 0.230 9.07
67. 44.792 0.076 9.02
67. UU,E67 0.727 7.09
67. 45.594 0. 140 .01
67. 45.734 0.274 8.04
67. 4€.CC8 0.134 8.11 (LAST NC1E, V3)
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