Ensemble Timing in Computer Music

David A. Jaffe

Center for Computer Research in Music and Acoustics
Department of Music, Stanford University
Stanford California, 94305

Abstract — Computer music systems have

tended to deal in a clumsy manner with both
inter- and intra-voice timing. A solution called
a “time-map” is proposed. It provides a simple
yet general formalism for describing ensemble
timing interaction.

Introduction

The use of computers in music allows for a wide
variety of musical timing interactions which would be
impossible or extremely difficult with human performers
alone. However, computer music systems have tended
to neglect or deal in a clumsy manner with both inter-
and intra-voice timing and phrasing, often resulting
in mechanical-sounding results. Attempts at reliev-
ing this oppresive rigidity using random jitter have
proven inadequate and difficult to control. Typically,
the more freedom given to individual parts, the more
difficult the task of constraining coordination between
parts. The solution to this problem is the “time-map”,
a simple yet general formalism for describing ensemble
timing interaction. This technique provides a means
of gaining precise, yet flexible phrasing control.

Ensemble Timing in Instrumental Music

As a point of departure, consider the ensemble
timing interaction of a traditional string quartet. The
quartet as a whole plays what is on the printed page
with group tempo and phrasing adjustments. At the
same time, each player occasionaly deviates in an in-
dividual manner from that trajectory. The performers,
using the feedback they receive from listening to each
other, adjust their individual timing to coincide precisely

185

to a basic pulse as in some modern pieces. The resul-
tant timing, which will be referred to as “clock time”
is quite different from the view of time as represented
on the page of a given instrumentalist, which will be
referred to as “basic time” with respect to that in-
strumentalist.

Ensemble Timing in Computer Music

It would be desirable to have a computer music
timing system capable not only of matching the rich-
ness of instrumental timing but also of opening up new
possibilities of ensemble relationships.

This suggests the term “ensemble timing” be in-
terpreted broadly to mean an interaction between two
or more “voices”, each of which may have its own view
of time. A voice is simply a process which produces
a series of events. Events may be anything from in-
dividual notes to complex sounds of orchestral dimen-
sions and may be composed of sub-events. Even a
single voice playing with rubato can be considered to
be participating in an ensemble timing situation in the
sehse that it is interacting with an implied pulsation.

Ensemble timing consists of two basic elements,

coordination at prescribed points of reference and prescribed

independence between these points.

Approaches to Timing

Before proceeding to a description of the time-
map, several other common timing approaches will be
examined. Each of these falls short, to some extent, in
providing the desired degree of timing control.

Clock Time

The most basic approach to timing is simply to
use clock time as the basic time for all voices. This
method is cumbersome and inflexible at best. Music
in which rhythm is clearly delineated seems to suffer
the most from this approach. The result is mechanis-
tic and rigid, similar to the timing of an instrumen-

talist rehearsing with a metronome. Such computer
e

ICMC '84 Proceedings



music has been compared to a “first reading” of an
instrumental piece [Pierce 1984].

Tempo Perturbation

The next level of complexity involves introducing
perturbation such as random numbers to the event
durations. This helps break up the oppressive rigidity
of the clock time approach. However, the increase in
linear freedom is provided at the expense of precise
coxnirol over vertical alignment. Typically, voices tend

to gradually wander apart as the piece progresses. Furthermore,

undesired overlaps may result when the tempo is in-

creasing and gaps may result when the tempo is decreas-
ing. This occurs even if the “perterbation” is simply

a steady tempo change applied to a basic rhythm.

Figure 1 shows a time-line graphic representation which
illustrates the distortion in vertical alignment produced
using this algorithm in such a case. The crux of the

problem is the absence of any reference point and the

fact that duration is computed as if the tempo were

remaining constant for the duration of the event.

Running Onset Tally

These problems can be solved by keeping a run-
ning tally of the event onset-times with respect to the
voice and perturbing always in reference to that quan-
tity so that perterbation error does not accumulate.
This is much closer to the way human musicians play.
They do not “accumulate” error. Rather, they are
always compensating for their “mistakes”.

The seemingly innocent change of emphasis from
tempo, the distance in time between events, to onset-
times, the time at which events occur is actually of
significant importance. This process is equivalent to
integrating the tempo and suggests a more flexible
method, which we call the tsme-map.

Time-Map
The time-map is defined as a continuous strictly

increasing function, defined over the duration of the
piece, which maps from one time scale to another time

186

ICMC 84 Proceedings

scale.* When the same map is applied to a group of
voices, it is assured that those voices will stay perfectly
synchronized. Figure 2a shows a sample time-map.
Figure 2b is a piece of pseudo-ALGOL code illustrating
how a time-map is accessed.

Thinking in instrumental terms, the time-map can
be interpreted as a representation of the “warping”
which occurs when an instrumentalist or conductor in-
terprets a piece. The pre-deviated time in this case
represents time as shown on the score before tempo
and expression are added and the post-deviated time
represents the actual onset-times of the notes played
by the performer.

Advantages of time-maps

The time-map provides the composer with a means
of constraining precisely where vertical alignment will
occur. In addition, many independently warped time
trajectories can be handled by constructing a different
time-map for each voice. Wherever two maps inter-
sect in pre-mapped time, there will be a vertical coin-
cidence at that point in post-mapped time, providing
there is an event in each voice at that point.

The time-map has several other advantages over
other methods. Look-ahead is easy to do because the
calculation does not depend on previously computed
values. It is therefore possible to look into the fu-
ture and find out what the time warping will be when
an event finishes. Thus, unwanted gaps and overlaps
can be avoided, even when the tempo is fluctuating
wildly. Also, it easy to see what is going on with
the tempo. The tempo is simply a function of time
attained by differentiating the time-map, segment by
segment. Finally, with the extension of function com-
position described below, the time-map method can be
used to arrange time trajectories hierarchically thus
making it possible to implement sophisticated ensemble
timing situations.

* Discontinuos functions are invalid because they repre-
sent a jump ahead in time; decreasing functions are invalid
because they represent a time reversal.



What Type of Map?

The first time-maps tried were coraprised entirely
of connected line segments as shown in Figure 3. Such
maps work well for examples in which only discrete
tempo changes are required. But attempts at con-
tinuous tempo change using line segments tend to sound
unnatural. This is because the tempo has “glitches”
which result from the abrupt changes of tempo from
one line segment to another. Although it is possible to
contrive the effect of continuously changing tempo by
constructing a time-map comprised of one segment per
event, the very fact that this is necessary suggests that
the representation is sub-optimal. The solution is to
use a combination of linear and non-linear functions to
comprise the map. Any such map may be used as long
as it meets the restrictions given under the defintion
of the time-map.

Ways Of Creating Maps

" The most straightforward method for construct-
ing a time-map is for the composer to specify it directly.
However, musicians often prefer to think in terms of
tempo rather than in terms of time-maps. Therefore, a
front-end to the process can be added which allows the
composer to specify a tempo function in terms of line
segments. From this tempo function, the correspond-
ing time-map can then be computed. In the tempo
function, a segment with slope of zero represents a con-
stant tempo and a segment with a non-zero slope repre-
sents a steadily changing tempo. The only restrictions
on the tempo function is that it be strictly positive
and defined over the interval of the piece. It need not
be continuous, since tempo can change abruptly. The
corresponding time-map is then derived by integrating
this function, one segment at a time, producing a map
comprised of connected quadratic segments. Such a
parabolic map and the line segment tempo function
from which it is derived are shown in Figure 4.

For specifying tempi which vary at non-constant
rates, higher order polynomials could be specified in
the tempo function. Of course, it is also possible to

use functions other than polynomials, but sticking to
polynomials insures that the integration will be easy
to do.

Another means of specifying time-maps is to “perform”
the clock time rhythm, tell the computer what the
rhythm is in basic time, and then have the computer
correlate the two and construct the map [Smith 1970].
This has significant implications for live performance
via the inverse time-map which is discussed below.

Combining Maps

The string quartet ensemble situation described
above, in which both individual and group phrasing
and tempo fluctuation are present, can be general-
ized into the model of combining any number of time-
maps. One of the most attractive methods of combin-
ing time-maps is the technique of “function composi-
tion”. Let g(t) and f(¢) be two maps, with g defined
over the interval [f(0), f(T)] and T equal to the dura-
tion of the piece. Then the composite function is
defined as g(f(t)), where ¢ is basic time. The tempo
at time ¢ (where it exists)* is the derivative of this
function, given by the chain rule for differentiation:

(/)" = g(S()S(2)

By the definition of a time-map, g(t) and f(t) are
strictly positive and continuous. This implies g(f(t))
is also strietly positive and continuous. Thus the tech-
nique of function composition has the attractive property
that the composite of two time-maps is another time-
map. )

Implementation Constraints

The composite map can be computed in advance
or it can be computed at execution time. Computing
in advance may be more efficient for real-time uses.

* The tempo can not be said to exist at the instant it
changes abruptly.

ICMC '84 Prqco_odhgs



On the other hand, it is not always easy to do if
the component time- maps consist of something other
than first order splines because the order of the com-
posite is the product of the orders of the constituents.
Therefore, if real-time constraints will allow, it is preferable
to do the function composition at execution time. Another
advantage is that the knowledge of the constituents

is preserved and is available for debugging and edit-
ing. This works especially nicely in a language such as
LISP where function calls can be teated as data and

an arbitrary map can be applied at run-time without
precompilation.

Recursive Scheduler for Hierarchical Timing Control

Hierarchical control of time-maps provides a power-
ful domain in which to implement complex depen-
dencies and explore new relationships in ensemble tim-
ing. One way of implementing hierarchical control is
to use a tree-structured scheduler comprised of time-
maps, voices and “mergers”. Terminal nodes of the
tree are voices which produce events. Non-terminal
nodes are mergers. Each merger handles one or more
event streams, each with its own time-map (which may
be the same as the map of its sibling). Precisely, a
merger works as follows: When it receives an event
message from one of its children, it performs the ap-
propriate time-mapping on that event and inserts it
into a cue sorted by post-mapped onset time. It then
sends the first event on the cue to the parent node and
sends a message to the child from which that event
came, asking for its next event. If there is no parent,
the event is sent to the output object.

This implementation has the advantage that knowledge
is modularized and local to the object to which it ap-
plies, and a merger or voice need know nothing about
any maps which appear above it in the tree. Figure 5
shows an example tree in which four voices are mapped
through four maps. Voices 2 and 3 (mapped by map
J) are merged by merger X. This merged stream
(mapped by map G) is then merged by merger Y with
two other streams: voice 1 (mapped by map F) and
voice 4 (mapped by maps K and H).

ICMC ’84 Proceedings 188

An Important Special Case - Local Warping

The Harvard Dictionary of Music [Apel 1969] defines
the term Rubato as referring to two distinctly different
types of tempo fluctuation. One is simply a free ap-
proach to tempo, traditionally applied to the entire
musical texture. The other involves a “give-and-take”
principal, in which the musician makes up for any lost
time, and is traditionally applied to the melody inde-
pendent of the accompaniement.

A special class of composite t:ansformations has
this “give-and-take” property. This class consists of
transformations which leave the endpoints invariant.
This allows segments of time to be locally warped without
affecting neighboring segments.

A convenient implementation uses a library of nor-
malized transformations. Each transformation is defined
in the interval {0, 1] with f(0) =0 and f(1) = 1. The
tranformation can then be applied over any [a, b] by
applying it with the appropriate scaling and offset. As
long as the normalized transformation is a valid map,
any application of that transformation will also be a
valid map. It is hoped that further research into per-
formance practice will provide prototypical examples
of natural sounding transformations which can then
be incorportated into the library.

Local transformations can also be used in a larger,
compositional sense. For exmaple, consider the trans-
formation f(t) = t + sin(tb)a, where a and b are
parameters and ¢ is time. The two parameters must be
chosen with care; for some values f is not a valid time-
map. This transformation makes up for lost time in
any period of time for which ¢b goes through a multiple
of 7. In the composition Silicon Valley Breakdown for
four-channel computer-generated tape written by the
author in 1982, this transformation was used to create
elastic cannons which coincide at prescribed times and
“chase each other” in between these times. Each can-
non is repeated a number of times using different values
of a, which controls the amount of deviation from
unison, and b, which controls how fast the sinusoidal
ensemble timing deviation occurs. In addition, a phase



offset is added to the sine calculation, providing con-
trol over where in the course of the cannon the unison
relationship will occur.

Coordination with Live Performers

Sophisticated ensemble interaction between live
performers and computers is a goal whose difficulties
and potential rewards are great. Although an in-depth
treatment of the subject is beyond the scope of this
paper, an overview will be presented and the role of
the time- map in this context will be described.

Most traditional approaches to computer/performer
interaction fall into one of three categories: instrumen-
talists playing with a tape, passive electronic process-
ing and keyboard performance. While interesting pieces
have been created in each of these domains, in none
does the computer participate as a true “member of
the ensemble”. Instead, it behaves like either the most
egotistical soloist, oblivous of the other members of the
ensemble, or like the most passive accompanist, never
contributing anything of its own.

New software and hardware developments are mak-
ing it possible for the computer to behave intelligently:
to hear, understand and respond. At the very least,
it would be desirable for the computer to be able to
follow the tempo of the performers. To do this, the
time-map again becomes useful, this time in its inverse
form.

Inverse Maps - Extracting Warpings

The inverse map represents a description of the
score as a function of the performance. Once the com-
puter discovers the map, it can follow, respond, etc.
The problem of how to determine the map is, however,
non-trivial. The task is greatly simplified if the com-
puter already knows the score. Yet, even in this case,
a variety of complications arise. These include the
possibility of errors in both signal-processing and per-
formance. Also, since the computer is constrained to
respond in real-time, it can not “wait and see what
will happen”, i.e. there can be no look-ahead into the
future of the performance. Researchers who have been
working in this area include Dannenberg and Vercoe
[Dannenberg, 1984; Vercoe, 1984].

A more difficult problem is that of extracting the
score from a live performance. This involves simul-
taneously discovering the score and constructing the
map. One group doing such research is the automatic
transcription project being conducted at CCRMA, Stanford.
The goal of this project is nothing short of computer
understanding from audio signals with no prior knowledge
of the score [Foster et. al., 1982; Chafe et. al., 1982].

189

Conclusion

The time-map and inverse time-map provide links
between the worlds of warped time and clock time and
between the worlds of human and computer perfor-
mance. When coupled with function composition, the
time-map approach provides a powerful formalism for
dealing with problems of warped versus clock time. In
addition, it provides for a system of hierarchical time
warping. The technique is a practical and efficient
method useful both in simulating the effects of live
performance situations and in devising new composi-
tional concepts of ensemble timing.

Acknowledgements

Thanks to Johannes Goebel, Marc LeBrun, Bernard
Mont-Reynaud, Andy Schloss, Bill Schottsaedt, Bob
Shannon, and Julius Smith for input on this paper.

References

Apel, Willi, eds. 1969. Harvard Dictionary of Music.
Cambridge, Mass: Belknap Press.

Chafe, C., B. Mont-Reynaud, and L. Rush. 1982.
“Toward an Intelligent Editor for Digital Audio: Recognition
of Musical Constructs.” Computer Music Journal 6(1):30-
41.

Dannenberg, Roger B. “An On-Line Algorithm for Real-
Time Accompaniment”. Paper presented at the International
Computer Music Conference. IRCAM, Oct., 1984,

Foster, S., W. A. Schloss, and A. J. Rockmore. 1982.
“Toward an Intelligent Editor of Digital Audio: Signal
Processing Methods.” Computer Music Journal 6(1):
7-17.

Pierce, John. 1984. Private communication.

Smith, Leland. 1970. “The Humanization of Computer
Music”. Paper presented at a confernce of the Audio
Engineering Society, Atlantic City, N.J. 1970.

Vercoe, Barry. “The Synthetic Performer in the Context
of Live Performance”. Paper presented at the International
Computer Music Conference. IRCAM, Oct., 1984.

ICMC ’84 Proceedings



460 Accel. J=l20

. )
INTENT é—_—r (

T I M E

RESULT JW= } —t z R '

—

[0}
’ i ical alignment
- A time-line hic representation of the vert
z:g:::tllon resulzlng fr-gl;a:empo per turbation. Also shoun is a representation
in musical notation of the intended effect.

. /‘/

fasd

6] g
Figure 2a - A sample time map.

WHILE onset < total_duration DO
BEGIN
onset + neu_onset;
duration « Time_Map (onset + basic_duration) - onset;
neu_onset « onset + duration;

D;

Figure 2b - Pseudo-ALGOL code illustrating hou a time map is accessed.

t >
Abrupt changes in

Figure 3 - A map comprised entirely of line segments.
slope uhere segments meet represent abrupt changes in tempo.

ICMC 84 Proceedings



Figure 4 - A quadratic time map (left) and the |line segment tempo function
from which it was derived (right).

Y

(&Y (H)

®

VAE

X
(3) (7) ' x)
N\

d

i - An ex le tree scheduler in which four voices are mappe

’:l:u?::;hsfour mm:t“p Squares are mergers. Triangles are voices. Time
mappings are shoun in parenthesis.

91 ICMC '84 Proceedings



